Какие металлы используются при производстве интегральных схем. Технология изготовления микросхем

Подписаться
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:

Принцип формирования структур микросхем. Электронная вакуумная гигиена

Основные принципы интегральной технологии. Принцип локальности. Принцип послойности. Запыленность воздушной среды. Температура и влажность воздушной среды. Чистота помещений и локальных объемов. Модульные чистые комнаты.

Вода, газы и газовые среды, применяемые в производстве ИМС

Необходимость использования чистой воды, газа и газовых смесей. Чистота оборудования, помещения и личная гигиена работающих.

Требования к технологическим процессам. Требования к условиям производства микроэлектронных устройств

Надежность. Экономичность. Безопасность. Технологичность. Необходимость разработки конструкторской и технологической документации.

Подготовка слитков и резка их на пластины

Ориентация слитков. Формирование базового среза. Резка слитков на пластины.

Механическая обработка пластин. Абразивные материалы и инструменты

Необходимость и суть механической обработки пластин. Абразивные материалы и инструменты, применяемые при шлифовке и полировке пластин.

Шлифовка и снятие фаски, полировка пластин

Шлифовка пластин. Полировка пластин. Снятие фаски. Методы и технология

9Контроль качества пластин и подложек после механической обработки

Измерение геометрических размеров пластин после механической обработки. Контроль качества поверхности пластин. Измерение высоты микронеровностей на пластине.

10Очистка пластин. Методы и средства

Классификация загрязнений и методов очистки. Обезжиривание погружением, струей и т.д. Методы контроля чистоты поверхности пластин.

11Химическая обработка и очистка поверхности пластин. Интенсификация процессов очистки

Обезжиривание в растворителях, обезжиривание в парах растворителя, обезжиривание в моющих порошках, в щелочах, в пероксидно-аммиачных растворах. Ультразвуковое обезжиривание, гидромеханическая отмывка, отмывка струей, кипячение и т.д.

Травление пластин

Кинетика травления кремния. Селективное и полирующее травление. Зависимость скорости травления от свойств используемых материалов.



13Сухая очистка. Газовые разряды при низком давлении

Коэффициент распыления. Отличительные особенности травления. Ионно-лучевое травление.

14Методы плазменного травления

Физика процесса ионного травления. Эффективность распыления поверхности. Травление в диодных и триодных камерах. Особенности их конструкций, достоинства и недостатки.

15Ионно-плазменное и ионно-лучевое травление .

Реактивные методы плазменного травления: ионно-лучевое и ионно-плазменное травление. Плазменное травление с применением газосодержащих смесей.

16Плазмохимическое травление, реактивное ионное травление

Плазменное травление. Радикальное плазмохимическое травление. Реактивное ионно-плазменное травление и ионно-лучевое травление Анизотропия и селективность травления.

17Факторы, определяющие скорость и селективность травления

Энергия и угол падения ионов. Состав рабочего газа. Давление, плотность мощности и частота. Скорость потока. Температура обрабатываемой поверхности.

18Контроль качества пластин и подложек

Контроль поверхности пластин. Контроль качества очистки поверхности (метод светящихся точек, метод капли, трибометрический метод, косвенный метод).

19Фотолитография. Фоторезисты. Операции фотолитографии

Активные резисты. Фотохимические процессы, происходящие в фоторезисте при облучении негативных и позитивных фоторезистов. Особенности операций получения рисунка на фоторезистивной пленке.

20Технология проведения фотолитографических операций

Методы и суть операции фотолитографии. Режимы обработки фоторезистивной пленки и необходимость точного их соблюдения.

21Бесконтактная фотолитография. Ограничения контактной фотолитографии. Проекционная фотолитография

Фотолитография на микрозазоре. Проекционная фотолитография с передачей изображения 1:1 и с уменьшением изображения. Физические и технические ограничения контактной фотолитографии.



22Термовакуумное напыление

Образование пара вещества. Распространение пара от источника к подложкам. Конденсация пара на поверхности подложки. Образование тонкой пленки. Техника термовакуумного напыления. Достоинства и недостатки метода.

Варианты методов получения оксидных пленок на кремниевых пластинах

Термическое оксидирование при повышенном давлении. Термическое оксидирование с добавлением паров хлористого водорода. Выбор режимов и условий выращивания термического оксида.

26Свойства двуокиси кремния

Структура двуокиси кремния Факторы, влияющие на пористость двуокиси кремния.

Металлизация структур

Требования к омическим контактам, токоведущим дорожкам и контактным площадкам. Технология и особенности металлизации структур.

Подготовка полупроводниковых структур к сборке

Контроль готовых структур по электропараметрам. Приклеивание пластин к адгезионному носителю. Требования к процессу разделения пластин на кристаллы. Алмазное и лазерное скрайбирование пластин и подложек. Скрайбирование пластин алмазным резцом. Особенности процесса, достоинства и недостатки.

61 Методы ориентированного разделения пластин

Разделение пластин на кристаллы с сохранением их ориентации. Особенности технологического процесса. Достоинства и недостатки дисковой резки. Ломка пластин. Разделение пластин без использования дальнейшей ломки

Шаталова В.В.

Вопросы подготовил преподаватель

1. Малышева И.А. Технология производства интегральных микросхем. – М.: Радио и связь, 1991

2. Зи С. Технология СБИС. – М.: Мир, 1986

3. Тилл У., Лаксон Дж. Интегральные схемы, материалы, приборы, изготовление. – М.: Мир, 1985.

4. Маллер Р., Кейминс Т. Элементы интегральных схем. – М.: Мир, 1989.

5. Коледов Л.А. Технология и конструкции микросхем, микропроцессоров и микросборок - М.: ООО “Лань-пресс”, 2008.

6. Онегин Е.Е. Автоматическая сборка ИС - Мн.: Вышэйшая школа, 1990.

7. Черняев В.Н. Технология производства интегральных микросхем и микропроцессоров. – М.: Радио и связь, 1987

8. Парфенов О.Д. Технология микросхем, - М.: Высшая школа, 1986.

9. Турцевич А.С. Пленки поликристаллического кремния в технологии производства интегральных схем и полупроводниковых приборов. – Мн.: Бел наука, 2006.

10. Щука А.А. Наноэлектроника. – М.: Физматкнига, 2007.

Общая характеристика технологии производства микросхем

Основные понятия. Классификация и характеристика интегральных микросхем (ИМС). Основные этапы технологии изготовления ИМС, их назначение и роль. Принципы интегральной технологии, методы изготовления структур микросхем, особенности технологии производства ИМС.

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик , уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Продолжительность: 2 часа (90 мин.)

11.1 Основные вопросы

Понятие интегральной микросхемы;

Виды интегральных микросхем, различия между полупроводниковыми и гибридно-пленочными микросхемами;

Основные этапы производства полупроводниковых интегральных микросхем;

Основные этапы производства гибридно-пленочных интегральных микросхем.

11.2 Текст лекции

11.2.1 Понятие интегральной микросхемы. Виды интегральных микросхем до 40 мин

Ранее вся электронная аппаратура создавалась на основе дискретных электрорадиоэлементов, которые с помощью соединительных проводов объединялись в функциональные узлы. Усложнение электронной аппаратуры, высокая трудоемкость операций по установке и электрическому монтажу дискретных элементов обусловили необходимость использования функционально законченных электронных узлов, изготовление которых было бы автоматизированным – интегральных микросхем, выполняющих функции преобразования, хранения, обработки, передачи и приема информации и определяющих тактико-технические, конструктивно-технологические, эксплуатационные и экономические характеристики ЭВМ.

Интегральной микросхемой (ИМС) называют функционально законченный электронный узел, элементы и соединения в котором конструктивно неразделимы и изготовлены одновременно в едином технологическом процессе.

По конструктивно-технологическому исполнению ИМС делятся на полупроводниковые и гибридно-пленочные.

Полупроводниковые ИМС имеют в своей основе кристалл полупроводникового материала, в поверхностном слое которого (путем внедрения атомов примеси) создаются все элементы ИМС – транзисторы, диоды, резисторы, конденсаторы, а соединения между ними выполняются по поверхности кристалла тонкопленочной технологией.

Полупроводниковые ИМС могут быть:

Однокристальными (монолитными);

Многокристальными (микросборки).

Однокристальные ИМС выполнены на одном кристалле полупроводникового материала, могут иметь индивидуальный корпус с внешними выводами для монтажа на печатной плате, а могут быть бескорпусными и входить в состав микросборок.

Микросборка представляет собой совокупность бескорпусных микросхем, смонтированных на общей коммутационной плате. Также в качестве компонентов в микросборке могут присутствовать бескорпусные электрорадиоэлементы.

Гибридно-пленочные ИМС состоят из пленочных пассивных элементов (резисторов, конденсаторов и т.п.), бескорпусных полупроводниковых кристаллов (транзисторов, диодов, ИМС) и коммутационных проводников, собранных на подложку из изоляционного материала.

Число элементов в ИМС характеризует ее степень интеграции. По этому параметру все микросхемы условно делят на малые (МИС - до 10 2 элементов на кристалл), средние (СИС - до 10 3), большие (БИС - до 10 4), сверхбольшие (СБИС - до 10 6), ультрабольшие (УБИС - до 10 9) и гигабольшие (ГБИС - более 10 9 элементов на кристалл).

Наиболее высокой степенью интеграции обладают цифровые ИМС с регулярной структурой: схемы динамической и статической памяти, постоянные и перепрограммируемые запоминающие устройства. Это связано с тем, что в таких схемах доля участков поверхности ИМС, приходящаяся на межсоединения, существенно меньше, чем в схемах с нерегулярной структурой.

В качестве активных элементов в полупроводниковых ИМС в вычислительной технике чаще всего используют униполярные (полевые) транзисторы со структурой «металл – диэлектрик (оксид) – полупроводник» (МДП- или МОП-транзисторы). Существует два типа МДП-транзисторов: n-типа, обладающие электронной проводимостью, и p-типа, характеризующиеся проводимостью дырочной. Принцип действия таких транзисторов достаточно прост. В подложке кремния формируются две легированные области с электронной (n-тип) или дырочной (p-тип) проводимостью. Эти области называются стоком и истоком. В обычном состоянии электроны (для n-типа) или дырки (для p-типа) хотя и диффундируют в область кремния за счет избыточной концентрации, но не способны перемещаться между стоком и истоком, поскольку неизбежны процессы рекомбинации в области кремния. Кроме того, за счет такой диффузии на границах контактов между легированными областями стока и истока и кремния возникают локальные электрические поля, препятствующие дальнейшей диффузии и приводящие к образованию обедненного носителями слоя. Поэтому в обычном состоянии прохождение тока между истоком и стоком невозможно. Для того чтобы иметь возможность переносить заряд между истоком и стоком, используется третий электрод, называемый затвором. Затвор отделен от кремниевой подложки слоем диэлектрика, в качестве которого выступает диоксид кремния (SiO2). При подаче потенциала на затвор создаваемое им электрическое поле вытесняет вглубь кремниевой подложки основные носители заряда кремния, а в образующуюся обедненную носителями область втягиваются основные носители заряда стока и истока (мы говорим об основных носителях заряда, а не конкретно о дырках или электронах, поскольку возможен и тот и другой вариант). В результате между истоком и стоком в подзатворной области образуется своеобразный канал, насыщенный основными носителями заряда. Если теперь между истоком и стоком приложить напряжение, то по каналу пойдет ток. При этом принято говорить, что транзистор находится в открытом состоянии. При исчезновении потенциала на затворе канал разрушается и ток не проходит, то есть транзистор запирается.

Также в полупроводниковых ИМС могут использоваться и другие типы транзисторов, например, биполярные.

Биполярная технология на 30 % сложнее МДП технологии. В МДП технологии меньше количество технологических операций, особенно высокотемпературных диффузии; при одинаковой сложности - меньше размер (20 % от биполярной технологии), и, следовательно, больше процент выхода годных микросхем (т.к. вероятность возникновения дефекта на меньшей площади меньше).

Высокая надежность МДП микросхем обусловлена: меньшими размерами элементов (малые размеры элементов и малое энергопотребление дает возможность широко применять резервирование и мажоритарную логику даже в сложных схемах); значительным уменьшением числа межэлементных соединений.

К достоинству биполярных микросхем можно отнести быстродействие.

11.2.2 Основные технологические особенности производства интегральных микросхем до 50 мин

Важнейшим принципом технологии полупроводниковых МС является технологическая совместимость элементов ИМС с наиболее сложным элементом, которым является транзистор. Другие элементы (диоды, резисторы, конденсаторы) должны по возможности содержать только те области, которые включает транзистор. таким образом, технологический процесс изготовления полупроводниковой ИМС базируется прежде всего на технологии изготовления транзисторных структур.

Второй важный принцип – групповая обработка МС. Она должна охватывать как можно большее число операций. При групповой обработке улучшается воспроизводимость параметров ИМС и существенно снижается трудоемкость изготовления отдельных ИМС.

Следующим важным принципом является универсальность процессов обработки . Он означает, что для изготовления совершенно различных по своим возможностям и назначению ИМС применяются одинаковые типовые технологические процессы, оборудование и режимы. Это позволяет одновременно, без переналадки оборудования, выпускать ИМС различного функционального назначения.

Четвертый принцип – унификация пластин-заготовок , содержащих максимальное количество признаков микросхемы.

Технологический процесс производства современных (полупроводниковых) СБИС представляет собой последовательность операций и переходов между ними, осуществляемых над исходными полупроводниковыми пластинами с целью получения микросхем с требуемыми эксплуатационными характеристиками. Технологические операции можно разделить на три группы: подготовительные, основные и заключительные.

К подготовительным операциям относят выращивание полупроводниковых слитков (например, методами Чохральского и зонной плавки), резку слитков на пластины, шлифовку, полировку, травление поверхности пластин, промывку в деионизованной воде, сушку и др.

К основным технологическим операциям относят литографию (фотолитографию в ультрафиолетовой области спектра и в жестком ультрафиолете, рентгенолитографию, электронно-лучевую и ионную литографии), эпитаксию (посредством испарения в глубоком вакууме и распыления ионами инертного газа, эпитаксию за счет реакций разложения и восстановления, жидкофазную и молекулярно-лучевую эпитаксии), окисление, травление (ионно-лучевое и ионно-плазменное), легирование (диффузия, ионная имплантация), отжиг (посредством галогенных ламп, отжиг электронным пучком, лазерный отжиг), осаждение на поверхность пластин различных по химическому составу пленок и др.

К заключительным технологическим операциям относят скрайбирование и ломку пластин на кристаллы, разварку внешних выводов, герметизацию кристаллов в корпусах и др.

Практически все перечисленные технологические операции сопровождаются контрольными операциями, позволяющими осуществлять отбраковку дефектных пластин и кристаллов. К ним относят, например, контроль содержания примесей в пластинах, контроль деформаций поверхности пластин и др.

При производстве различных типов гибридных интегральных микросхем технологический процесс может содержать различные операции (это зависит от выбранной технологии - тонкопленочной или толстопленочной, от того, какие пассивные элементы используются в схеме - есть ли, например, пленочные конденсаторы).

Укрупненные схемы технологических процессов производства полупроводниковых и гибридно-пленочных ИМС приведена на рисунках 11.1 и 11.2.

Рисунок 11.1 – Укрупненная схема технологического процесса изготовления полупроводниковых однокристальных ИМС.

Рисунок 11.2 – Укрупненная схема технологического процесса изготовления гибридно-пленочных ИМС.

4 Производство интегральных микросхем

Интегра́льная (микро)схе́ма (ИС, ИМС, м/сх, англ. Integrated circuit, IC, microcircuit), чип, микрочи́п (англ. microchip, silicon chip, chip) - тонкая пластинка, отколотая, отсечённая от чего-либо - первоначально термин относился к пластинке кристалла микросхемы) - микроэлектронное устройство - электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус.

Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС) - ИС, заключённую в корпус. В то же время выражение «чип компоненты» означает «компоненты для поверхностного монтажа», в отличие от компонентов для традиционной пайки в отверстия на плате. Поэтому правильнее говорить «чип микросхема», имея в виду микросхему для поверхностного монтажа. На 2009 год большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Современные интегральные микросхемы, предназначенные для поверхностного монтажа

Советские и зарубежные цифровые микросхемы

4.1 Технология производства полупроводниковых приборов и интегральных микросхем

Технология полупроводникового производства базируется в настоящее время на таких сложных прецизионных процессах обработки, как фото- и электронолитография, оксидирование, ионно-плазменное распыление, ионная имплантация, диффузия, термокомпрессия и др. К материалам, используемым в производстве приборов и микросхем, предъявляют высокие требования по чистоте и совершенству структуры. Для осуществления большинства технологических операций используют уникальное по характеристикам оборудование: оптико-механическое, термическое, ионно-лучевое. Процессы осуществляются в -специальных обеспыленных, помещениях с заданными влажностью и температурой.

4.2 Технологический маршрут

Технологический маршрут - это последовательность технологических операций обработки полупроводниковых пластин, применяемых для изготовления данного типа ПП или ИМС. Документом, содержащим описание маршрута, -является маршрутная карта. Она позволяет судить о перемещении изготовляемого прибора по всем операциям, указывает оборудование, материалы, трудовые нормативы и средства контроля. Проведение каждой технологической операции"регламентируется операционной картой, содержащей описание операции с указанием технологических режимов изготовления структуры или прибора и технологической оснастки. Технологические процессы изготовления различных ПП и ИМС многообразны. Можно выделить ряд общих технологических операций и примерно одинаковую их последовательность. Типовым маршрутом изготовления пленарного ПП или ИМС определяется последовательность из ряда основных операций.

1. Подготовка пластин. Исходные полупроводниковые пластины- эпитаксиальные структуры, например я-я+-типа, или монокристаллические подложки с электропроводностью п- или р-типа, полученные в качестве полуфабриката с завода-изготовителя, подвергают очистке, промывке, травлению с целью удаления с поверх-1 ности пластин загрязнений и частиц пыли. Слой с электропроводностью я-типа в эпитаксиальной я-я+-структуре составит в будущих транзисторах коллекторную область (рис. 1.1, а)..

2. Создание топологического рисунка. Чтобы в эпитаксиальной структуре сформировать области с электропроводностью р-типа, необходимо обеспечить проведение локальной диффузии через окна - отверстия в защитной маске. Размеры этих окон задают с помощью процесса фотолитографии. Маской, препятствующей диффузии, служит пленка диоксида кремния. Выращивание ее является необходимой стадией планарного процесса. Пленка диоксида 7 кремния Si02 толщиной 0,3-1,0 мкм надежно предохраняет структуру от воздействия многих внешних факторов и диффузии примесей. На пленку наносят слой фоторезиста - фотоэмульсии, экспонируют его ультрафиолетовым светом через фотошаблон, содержащий множество идентичных изображений баз транзисторов с ваданной конфигурацией и размерами. Засвеченные участки фоторезиста проявляются и обнажившуюся пленку Si02 удаляют. Окно, вскрытое для базовой диффузии, показано на рис. 1.1, б.

3. Получение р-п-перехода база- коллектор. Для прецизионной дозировки количества вводимой в кристалл примеси - атомов бора при создании области р-базы - используют процесс ионной имплантации, заключающийся во внедрении ускоренных ионов в поверхность кристалла. Слой фоторезиста служит защитной маской, так как ионы, внедренные в фоторезист, не достигают поверхности диоксида. Чтобы сформировать базовую область и р-п-пере-ход коллектор - база на требуемой глубине, используют последующую диффузионную разгонку внедренных атомов бора. Ее проводят в окислительной среде при высоких температурах. В результате формируется область базы с глубиной 2-3 мкм и на поверхности базовой области наращивается пленка Si02 толщиной 0,3-0,5 мкм (рис. 1.1, в).

4. Получение p-n-nepexoda эмиттер - база. Вначале формируют топологический рисунок эмиттерных областей, используя процесс фотолитографии по пленке Si02 над базовой областью. Одновременно вскрывают окна, задающие конфигурацию коллекторных 8 контактов. Фоторезист удаляют и ведут диффузию фосфора с высокой концентрацией на малую глубину (до 1-1,5 мкм) (рис. 1.1, г).

5. Контактная металлизация. Для присоединения к областям эмиттера, базы и коллектора электрических выводов необходимо металлизировать поверхности контактов. Предварительно проводят фотолитографическую обработку структуры для удаления пленки диоксида с нужных участков. Затем с помощью термического испарения в вакууме на всю поверхность пластины напыляют слой металла (например, алюминия) толщиной около 1 мкм, по которому проводят еще один процесс фотолитографии для удаления лишнего металла между областями контактов. Структура с контактной металлизацией показана на рис. 1.1, д. При изготовлении ИМС аналогичным образом создают тонкопленочные пассивные элементы- резисторы, конденсаторы, а также осуществляют коммутацию транзисторов.

6. Сборка и герметизация. Пластина содержит от нескольких сотен до десятков тысяч отдельных транзисторов. Ее разрезают на отдельные структуры, называемые на данном этапе кристаллами. На рис. 1.1, е показана топология такого кристалла с контактной металлизацией. Кристалл напаивают на кристаллодержатель, осуществляют разводку - подсоединение электрических выводов к контактам базы, эмиттера и коллектора - и герметизируют, помещая в металлический корпус или заливая пластмассой.

7. Испытания приборов. Для оценки параметров и надежности приборов до их поступления в отдел технического контроля производят электрические, климатические и механические испытания. Они важны для правильной информации о качестве и надежности приборов. Помимо этого каждая технологическая операция сопровождается контролем качества обработки, например измерением глубины диффузии, толщины эпитаксиального слоя, удельного или поверхностного сопротивления. После того как в структуре созданы?-?-переходы, производят контроль электрических параметров- напряжения пробоя, тока утечки, емкости. В технологическом маршруте предусмотрены специальные контрольные карты.

Рассмотренная последовательность операций характерна для изготовления планарно-эпитаксцального транзистора. В основе классификации приборов лежит технологической метод создания активных областей структуры. По этому признаку различают сплавные, диффузионные, эпитаксиальные, имплантационные дискретные ПП, а также их модификации, например сплавно-диффу-зионные и др. Большинство современных приборов изготовляют на эпитаксиальных структурах. Активные области формируют с помощью ионной имплантации и диффузии. МОП-транзисторы изготовляют на монокристаллических подложках без эпитаксиального слоя методами планарной. технологии. Непланарные диффузионные и эпитаксиальные переходы используют при изготовлении силовых Диодов и транзисторов.

Степень интеграции.

Были предложены следующие названия микросхем в зависимости от степени интеграции (указано количество элементов для цифровых схем):

Малая интегральная схема (МИС) - до 100 элементов в кристалле.

Средняя интегральная схема (СИС) - до 1000 элементов в кристалле.

Большая интегральная схема (БИС) - до 10000 элементов в кристалле.

Сверхбольшая интегральная схема (СБИС) - до 1 миллиона элементов в кристалле.

Ультрабольшая интегральная схема (УБИС) - до 1 миллиарда элементов в кристалле.

Гигабольшая интегральная схема (ГБИС) - более 1 миллиарда элементов в кристалле.

В настоящее время название ГБИС практически не используется (например, последние версии процессоров Pentium 4 содержат пока несколько сотен миллионов транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС, считая УБИС его подклассом.

Технология изготовления.

Полупроводниковая микросхема - все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия).

Плёночная микросхема - все элементы и межэлементные соединения выполнены в виде плёнок:

· толстоплёночная интегральная схема;

· тонкоплёночная интегральная схема.

Гибридная микросхема - кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.

Вид обрабатываемого сигнала.

Аналоговые

Цифровые

Аналого-цифровые

Аналоговые микросхемы - входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

Цифровые микросхемы - входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем ТТЛ при питании +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В соответствует логической единице. Для микросхем ЭСЛ-логики при питании −5,2 В: логическая единица - это −0,8…−1,03 В, а логический ноль - это −1,6…−1,75 В. Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов. По мере развития технологий получают всё большее распространение.

Рис. 1 Информационно-логическая модель проектирования радиоэлектронных устройств

Рис. 2 Детализация блока «Разработка структуры РЭУ с применением комплексного моделирования»


Рис. 3. Детализация блока «Комплексное моделирование физических процессов в РЭУ»

Рис. 4. Детализация блока «Исследование надёжности РЭУ»


Заключение

В результате проводимых мероприятий по развитию и реформированию радиоэлектронного комплекса должна быть создана его структура, обеспечивающая устойчивое эффективное функционирование предприятий. При этом должны быть, безусловно, обеспечены условия выполнения действующей и разрабатываемой Государственных программ вооружения, программ военно-технического сотрудничества с иностранными государствами, федеральных и межгосударственных целевых программ. Должны получить развитие перспективные наукоемкие технологии для разработки и производства конкурентоспособной на внутреннем и внешнем рынках высокотехнологичной продукции двойного и гражданского назначения. От наших согласованных действий, будет зависеть не только развитие радиоэлектронного комплекса, но и в целом обеспечение национальных интересов России.

При стремительном росте российского рынка электроники в ряде отраслей, измеряемом двузначными цифрами (в процентах), его объем в сравнении с аналогичными показателями развитых стран пренебрежимо мал, чтобы оказывать сколько-нибудь значимое влияние на мировой рынок. По мнению некоторых экспертов, радикально изменить ситуацию на отечественном рынке электроники в области наращивания объемов производства удастся только после развертывания массового выпуска конкурентных конечных изделий под российским брендом. Основное производство отечественной электроники сосредоточено в столице и ряде крупных городов, и на нитевых рынках она способна конкурировать с западными продуктами внутри страны, а в некоторых случаях и за рубежом. Инновационный потенциал страны в электронной области не угас, но требует поддержки в государственном масштабе.


Литература

1. Ивченко В.Г. Конструирование и технология ЭВМ. Конспект лекций. - /Таганрог: ТГРУ, Кафедра конструирования электронных средств. – 2001. - http://www2.fep.tsure.ru/russian/kes/books/kitevm/lekpart1.doc

2. Гольдштейн Г.Я. Инновационный менеджмент: Учебное пособие. - Таганрог: Изд-во ТРТУ, 1998. 132с. URL: http://www.aup.ru/books/m23/1.htm

3. Конструкторско-технологическое проектирование электронной аппаратуры: Учебник для вузов. – М.: Изд. МГТУ им. Н.Э. Баумана, 2002. – 528 с. URL: http://slil.ru/22574041/529407141/Konstruktorsko-tehnologicheskoe_proektirovanie_elektronnoj_apparatury.rar

4. Технология приборостроения: Учебник / Под общей редакцией проф. И.П.Бушминского. – М.: МГТУ им. Н.Э.Баумана. URL: http://www.engineer.bmstu.ru/res/RL6/book1/book/metod/tpres.htm

5. Тупик В.А. Технология и организация производства радиоэлектронной аппаратуры. – СПб: Издательство: СПбГЭТУ "ЛЭТИ" – 2004. URL: http://dl10cg.rapidshare.de/files/31510061/4078542704/tehnologiya.i.organizaciya.proizvodstva.radioelektronnoj.apparatury.pdf.rar

6. ГОСТ Р 15.000-94. Система разработки и постановки продукции на производство. Основные положения.

7. ГОСТ Р 15.201-2000. Система разработки и постановки продукции на производство. Продукция производственно-технического назначения. Порядок разработки и постановки продукции на производство.... рабочим органом, функции который будет выполнять созданный в качестве главного организационного инструмента совершенствования РИС – Аналитический Центр Инновационного Развития (АЦИР). Стратегическая функция АЦИР – организационно-правовое и финансовое сопровождение креативной деятельности в регионе, объединение под единым управлением инновационной и инвестиционной функции. Создатели инноваций (...

Которая поступает в непосредственное потребление без предварительной переработки, относится к предметам потребления. 2.6 Научно-технический прогресс в агропромышленном комплексе. Осуществление научно-технического прогресса в сельском хозяйстве базируется на присущих ему экономических и биологических законах. Вследствие этого научно-технический прогресс в аграрном производстве имеет свои...



Посредника – ФГУП «Рособоронэкспорт». Все это предполагает необходимость проведения исследований и разработки методического обеспечения оценки государственным посредником инвестиционной привлекательности предприятий – исполнителей контрактов в сфере военно-технического сотрудничества. В результате решения поставленной в диссертационной работе научной задачи автором: 1. Проведен анализ...

Изготовление полупроводниковых ИМС осуществляют, используя два основных технологических процесса: диффузию примесей, создающих в полупроводнике область с типом проводимости, противоположным исходному, и эпитаксиальное наращивание слоя кремния на кремниевую подложку, имеющую противоположный тип проводимости.

Все элементы схемы формируются в так называемых островках, образованных в кристалле и изолированных между собой. Металлические полоски, необходимые для соединения элементов в электрическую схему, напыляют на поверхность пластины-кристалла. Для этого электроды всех элементов выводятся на поверхность пластины и размещаются в одной плоскости, в одном плане. Поэтому технология изготовления схем с помощью диффузии называется планарно-диффузионной , а с помощью эпитаксиального наращивания – эпитаксиально-планарной.

Исходным материалом для изготовления ИМС по планарно-диффузионной технологии является слабо легированная пластина кремния p -типа, на которую методом фотолитографии наносят защитный слой SiО2 (рис. 1.20). Через окна в защитном слое производится диффузия примеси p -типа, в результате чего образуются островки, границы которых упираются снизу в защитный слой, что резко снижает возможность протекания токов утечки по поверхности. Между островками и подложкой образуется р-п- переход, к которому подключают напряжение таким образом, чтобы этот переход был заперт (т.е. минусом на р -подложке). В результате островки становятся изолированными друг от друга.

Рис. 1.20.

Исходным материалом при эпитаксиально-планарной технологии служит пластина кремния n-типа со слоем SiO2 (рис. 1.21, а), в которой вытравливают продольные и поперечные канавки (рис. 1.21, б). Полученную фигурную поверхность (в виде шахматной доски) снова окисляют, создавая изоляционный слой диоксида кремния (рис. 1.21, в). На этот слой эпитаксиально наращивают слой кремния собственной проводимости (рис. 1.21, г), а верхний слой кремния n-типа сошлифовывают. Полученные таким образом островки (рис. 1.21, д ) надежно изолированы друг от друга фигурным слоем диэлектрика и емкость между ними существенно меньше, чем в предыдущем случае. Однако такая технология ИМС сложнее и стоимость их изготовления выше.

Рис. 1.21.

В полученных тем или иным способом островках формируют как активные, так и пассивные элементы методом диффузионной технологии или эпитаксиальным наращиванием.

Компоненты ИМС

Транзисторы ИМС получают последовательной диффузией донорных и акцепторных примесей в островки, созданные тем или иным способом (рис. 1.22, а). Характерным для них является расположение выводов в одной плоскости.

Для осуществления логических операций созданы многоэмиттерные транзисторы (рис. 1.22, б, в ), применение которых основано на их свойстве оставаться открытыми, если хотя бы к одному из эмиттеров приложено относительно базы прямое напряжение. Запирание транзисторов происходит тогда, когда на все эмиттеры поданы обратные напряжения.

Рис. 1.22.

а – биполярный транзистор; б – многоэмиттерный транзистор; в – условное обозначение многоэмиттерного транзистора

Наряду с биполярными в ИМС широко применяют нолевые МДП-транзисторы, особенно МОП-транзисторы с индуцированным каналом. В основе их изготовления, так же как и биполярных, лежит планарная технология. Так, при изготовлении островков по планарно-диффузионной технологии получается практически готовая заготовка для МОП-транзистора. Каждый из двух соседних островков (см. рис. 1.20) может быть стоком или истоком этого транзистора. Поэтому для их изготовления требуется меньшее по сравнению с эпитаксиально-планарной технологией количество операций.

Диоды ИМС специально не изготавливают, а в качестве их используют транзисторы, включаемые по одной из схем (рис. 1.23) в зависимости от требований, предъявляемых к диоду.

Так, на рис. 1.23, а, б в качестве диода используется p-n-переход база–эмиттер. Диод открыт при указанной на рисунке полярности приложенного напряжения и закрывается при противоположной полярности. Диоды, выполненные в соответствии с рис. 1.23, а, б, обеспечивают высокое быстродействие, но малый ток. Диоды, выполненные в соответствии с рис. 1.23, в, используют два параллельных р-n-перехода и, соответственно, больший ток, но меньшее быстродействие. Диоды, в соответствии с рис. 1.23, г, д, имеют наибольшее допустимое обратное напряжение, подобно тому, как в биполярных транзисторах наибольшее напряжение может быть приложено к переходу база–коллектор.

Рис. 1.23.

Резисторы ИМС получают диффузией примесей в отведенные для них островки одновременно с созданием эмиттерных и базовых областей транзисторов. В процессе эмиттерной диффузии создаются резисторы с относительно низким сопротивлением (так как в эмиттерной области концентрация носителей велика), а в процессе базовой диффузии – с относительно высоким сопротивлением, потому что в базовой области концентрация носителей значительно меньше. Значения диффузионных резисторов от 10 Ом до 50 кОм.

На рис. 1.24 изображен резистор, сформированный в процессе базовой диффузии.

Рис. 1.24.

Конденсаторы ИМС, так же как и диоды, специально не изготавливают. Для их формирования, так же как и в варикапах, используется барьерная емкость р-п- переходов, которые формируются в островках одновременно с формированием транзисторов. Возможны три варианта формирования конденсаторов. Наибольшую удельную емкость конденсатора обеспечивает использование перехода эмиттер–база (порядка 1500 пФ/мм2), однако этот p-n-переход обладает наименьшим среди всех пробивным напряжением (единицы вольт). Использование перехода коллектор–база позволяет получить конденсатор, удельная емкость которого в 5–6 раз меньше, чем у конденсатора на основе перехода база–эмиттер, а пробивное напряжение примерно во столько же раз больше. Последний вариант выполнения конденсатора заключается в использовании барьерной емкости, образуемой между подложкой кристалла и коллектором транзистора.

Поскольку барьерная емкость образуется только у запертого р-n-перехода, напряжение, приложенное к обкладкам конденсатора, должно быть запирающим, т.е. обратным для p-n-перехода, емкостью которого он образован.

Корпуса микросхем

Для защиты от воздействия внешних факторов и механических повреждений все микросхемы помещают в защитный корпус. ИМС размещаются, как правило, в монолитных корпусах с 14 или 16 выводами. Простейший и самый дешевый корпус – пластмассовый. Однако ввиду недостаточного теплоотвода в нем можно размещать лишь схемы невысокой степени интеграции с рассеиваемой мощностью до 200 мВт.

Микросхемы со средней и высокой степенью интеграции из-за большого числа активных элементов рассеивают большую мощность. Для их размещения необходимы корпуса, обеспечивающие хороший теплоотвод и защищающие их от перегрева. Поэтому для микросхем средней и высокой степени интеграции используют керамический и металлокерамический корпуса. Если необходимо более интенсивное охлаждение, могут использоваться радиаторы. Плата с размещенными на ней корпусами микросхем может также обдуваться вентилятором, расположенным внутри корпуса электронного устройства.

Поскольку БИС/СБИС значительно сложнее МИС и СИС, для их работы требуются гораздо большее число выводов и более сложные корпуса. Так, 16-разрядный микропроцессор Intel 8086 размещался в 40-контактном корпусе, а число контактов у микропроцессора Pentium 4 составляло уже 480. Для вывода электрических сигналов в корпусах современных СБИС используют специальные шариковые выводы, расположенные по периметру корпуса в несколько рядов. Количество контактов в таких корпусах находится в пределах от нескольких сот до двух тысяч. Причем новые модификации процессоров разрабатываются под серийно выпускаемые корпуса. Для подключения процессорных СБИС применяются специальные соединители – сокеты, к которым осуществляется механический прижим корпуса процессора. Для процессоров Sandy Bridge используется корпус и соответствующий сокет с 2011 контактами.

Современные СБИС рассеивают настолько большую мощность, что для их охлаждения используются специальные охлаждающие системы – кулеры, содержащие вентилятор, радиатор с теплоносителем и систему регулирования.

← Вернуться

×
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:
Я уже подписан на сообщество «i-topmodel.ru»