Расчет на прочность при переменных нагрузках. Расчет на прочность при переменных напряжениях

Подписаться
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:

Переменные напряжения приводят к внезапному разрушению деталей, хотя величина этих напряжений существенно ниже предела текучести. Это явление называется усталостью .

Усталостное разрушение начинается с накопления повреждений и образования на поверхности микротрещины. Развитие трещины происходит обычно в направлении, перпендикулярном линии действия наибольших нормальных напряжений. Когда прочность оставшегося сечения становится недостаточной, происходит внезапное разрушение.

Поверхность излома имеет две характерные зоны: зону развития трещины с гладкой поверхностью и зону внезапного разрушения с крупнозернистой поверхностью хрупкого излома.

Способность материала воспринимать многократное действие переменных напряжений без разрушения называется выносливостью или циклической прочностью .

Предел выносливости - σ -1 – наибольшее переменное напряжение которое может выдержать образец бесконечное число циклов без разрушения.

σ -1 – определяется при базовом числе циклов. Для сталей N 0 = 10 7 циклов. Для цветных металлов и закаленных сталей N 0 = 10 8 .

Ориентировочно величину предела выносливости для стали можно определить по эмпирической зависимости:

σ -1 = 0,43·σ в

Расчет на выносливость выполняют после статического расчета, определения размеров и конструктивного оформления детали. Цель расчета – определение фактического коэффициента запаса прочности и сравнение его с допускаемым.

Условие прочности на выносливость:

При сложном напряженном состоянии коэффициент запаса прочности (суммарный) вычисляют по формуле:

где, коэффициент запаса прочности по нормальным напряжениям:

коэффициент запаса прочности по касательным напряжениям:

где ψ σ , ψ τ – коэффициенты чувствительности к асимметрии цикла, дается в справочниках в зависимости от предела прочности материала.

При расчете валов [S] = 1,5 (2,5) для обеспечения прочности (жесткости).

Пример разрушения вала электродвигателя Ø150мм.

в

Расчет металлических конструкций надлежит производить по методу предельных состояний или допускаемых. напряжений. В сложных случаях вопросы расчета конструкций и их элементов рекомендуется решать путем специально поставленных теорети­ческих и экспериментальных исследований. Прогрессивный метод расчета по предельным состояниям базируется на статистическом изучении действительной нагруженности конструкций в условиях эксплуатации, а также изменчивости механических свойств при­меняемых материалов. При отсутствии достаточно подробного статистического изучения действительной нагруженности кон­струкций тех или иных типов кранов расчеты их ведутся по ме­тоду допускаемых напряжений, базирующемуся на установлен­ных практикой коэффициентах запаса прочности. ­

При плоском напряженном состоянии в общем случае условию пластичности по современной энергетической теории прочности отвечает приведенное напряжение

где σ х и σ у - напряжения по произвольным взаимно перпендикулярным осям координат х иу . При σ у = 0

σ пр = σ Т , (170)

а если σ = 0, то предельные касательные напряжения

τ = = 0,578 σ Т ≈ 0,6 σ Т . (171)

Кроме расчетов на прочность для отдельных типов кранов существуют ограничения величин прогибов, которые имеют вид

f/l ≤ [f/l ], (172)

где f/l и [f/l ]- расчетное и допускаемое значения относительного статического прогиба f по отношению к пролету (вылету) l .Зна­чительные прогибы могут быть. безопасны для самой конструкции, но неприемлемы с эксплуатационной точки зрения.

Расчет по методу предельных состояний производится по нагрузкам, приведенным в табл. 3.

Примечания к таблице:

1. Комбинации нагрузок предусматривают следующую работу механизмов: . Iа и IIa – кран неподвижен; плавный (Ia) или резкий (IIа) подъем груза с земли или торможение его при опус­кании; Ib и IIb - кран в движении; плавный (Ib) и резкий (IIb) пуск или торможение одного из механизмов. В зависимости от типа крана возможны также комбинации нагрузок Ic и IIc и т. д.

2. В табл. 3 приведены нагрузки, постоянно действующие и регулярно возникающие при эксплуатации конструкций, образующие так называемые основные сочетания нагрузок.



Чтобы учесть меньшую вероятность совпадения расчетных нагрузок при более сложных их сочетаниях, вводятся коэффициенты сочета­ний n с < 1, на которые умножаются коэффициенты перегрузок всех нагрузок, за исключением постоянной. Коэффициент соче­таний основных и дополнительных нерегулярно возникающих нагрузок, к которым относятся технологические, транспортные и монтажные нагрузки, а также нагрузки от температурных воз­действий, принимается равным 0,9; коэффициент сочетаний основ­ных, дополнительных и особых нагрузок (нагрузки от удара о бу­фера и сейсмические) – 0,8.

3. Для некоторых элементов конструкций следует учитывать суммарное воздействие как комбинации нагрузок Ia со своим коли­чеством циклов, так и комбинации нагрузок Ib со своим количе­ством циклов.

4. Угол отклонения груза от вертикали а. может также рас­сматриваться как результат косого подъема груза.

5. Давление ветра рабочего Р b II и нерабочего - ураган­ного Р b III - на конструкцию определяется по ГОСТ 1451-77. При комбинации нагрузок Ia и Ib давление ветра на конструкцию обычно не учитывается в силу малой повторяемости в год рас­четных скоростей ветра. Для высоких кранов, имеющих период свободных колебаний низшей частоты более 0,25 с и установлен­ных в ветровых районах IV-VIII по ГОСТ 1451-77, учитывается давление ветра на конструкцию при комбинации нагрузок Ia и Ib.

6. Технологические нагрузки могут относиться как к случаю нагрузок II, так и к случаю нагрузок III.

Таблица 3

Нагрузки при расчетах по методу предельных состояний

Предельными называются состояния, при которых конструкция перестает удовлетворять предъявляемым к ней эксплуатационным требованиям. Метод расчета по предельным состояниям имеет целью не допускать наступления предельных состояний при эксплуатации в течение всего срока службы конструкции.

Металлические конструкции ТТ (подъемно-транспортных машин) должны удовлетворять требованиям двух групп предельных со­стояний: 1) потеря несущей способности элементов крана по проч­ности или потеря устойчивости от однократного действия наиболь­ших нагрузок в рабочем или нерабочем состоянии. Рабочим счи­тается состояние, при котором кран выполняет свои функции (табл. 3, случай нагрузок II). Нерабочим считается состояние, когда кран без груза подвержен только нагрузкам от собствен­ного веса и ветра или находится в процессе монтажа, демонтажа и транспортировки (табл. 3, случай нагрузок III); потеря несущей способности элементов крана вследствие разру­шения от усталости при многократном действии нагрузок различной величины за расчетный срок службы (табл. 3, случай нагрузок I, а иногда и II); 2) непригодность к нормальной эксплуа­тации вследствие недопустимых упругих деформаций или коле­баний, которые влияют на работу крана и его элементов, а также обслуживающего персонала. Для второго предельного состояния по развитию чрезмерных деформаций (прогибов, углов поворота) предельное условие (172) устанавливается для отдельных типов кранов.

Наибольшее значение имеют расчеты по первому предельному состоянию, так как при рациональном проектировании конструк­ции должны удовлетворять требованиям второго предельного состояния.

Для первого предельного состояния по несущей способности (прочности или устойчивости элементов) предельное условие имеет вид

N Ф ,(173)

где N - расчетная (наибольшая) нагрузка в рассматриваемом элементе, выраженная в силовых факторах (сила, момент, напря­жение); Ф - расчетная несущая способность (наименьшая) эле­мента соответственно силовым факторам.

При расчетах по первому предельному состоянию на проч­ность и устойчивость элементов для определения нагрузки N в формуле (171) так называемые нормативные нагрузки Р Н i (для конструкций подъемно-транспортных машин это максималь­ные нагрузки рабочего состояния, вводимые в расчет как на ос­новании технических условий, так и на основании опыта проек­тирования и эксплуатации) умножаются на коэффициент пере­грузки соответствующей нормативной нагрузки n i , после чего произведение Р Hi п i представляет собой наибольшую возможную за время эксплуатации конструкции нагрузку, называемую расчетной. Таким образом, расчетное усилие в элементе N в соответствии с расчетными сочетаниями нагрузок, приведенных в табл. 3, может быть представлено в виде

, (174)

где α i – усилие в элементе при Р Н i = 1, а расчетный момент


, (175)

где М Н i – момент от нормативной нагрузки.

Дляопределения коэффициентов перегрузки необходимо статистическое изучение изменчивости нагрузок по опытным данным. Пусть для данной нагрузки P i известна ее кривая распределения (рис. 63). Поскольку кривая распределения всегда имеет асимптотическую часть, при назначении расчетной нагрузки над­лежит иметь в виду, что нагрузки, которые больше расчетных(на рис. 63 область этих нагрузок заштрихована), могут вы­звать повреждение элемента. Принятие больших значений для расчетной нагрузки и коэффициента перегрузки уменьшает ве­роятность повреждений и снижает убытки от поломок и аварий, но приводит к увеличению веса и стоимости конструкций. Вопрос о рациональном значении коэффициента перегрузки должен решаться с учетом экономических соображений и требований без­опасности. Пусть для рассматриваемого элемента известны кри­вые распределения расчетного усилия N и несущей способности Ф. Тогда (рис. 64) заштрихованная площадь, в границах которой нарушается предельное условие (173), будет характеризовать вероятность разрушения.

Приведенные в табл. 3 коэффициенты перегрузки n > 1, так как они учитывают возможность превышения действительными нагрузками их нормативных значений. В случае, если опасным является не превышение, а уменьшение действительной нагрузки по сравнению с нормативной (например, нагрузка на консоли балки, разгружающая пролетное строение, при расчетном сече­нии в пролете), коэффициент перегрузки для такой нагрузки следует принимать равным обратной величине, т. е. n" = 1/n < 1.

Для первого предельного состояния по потере несущей способности от усталости предельное условие имеет вид

σ пр m К R, (176)

где σ пр – приведенное напряжение, а m К – см. формулу (178).

Расчеты по второму предельному состоянию по условию (172) производятся при коэффициентах перегрузки, равных единице, т. е. по нормативным нагрузкам (вес груза принимается равным номинальному).

Функция Ф в формуле (173) может быть представлена в виде

Ф = Fm К R , (177)

где F – геометрический фактор элемента (площадь, момент сопротивления и т. д.).

Под расчетным сопротивлением R следует понимать при расчетах:

на сопротивление усталости – предел выносливости элемента (с учетом числа циклов изменения нагрузки и коэффициентов концентрации и асимметрии цикла), умноженный на соответствую­щий коэффициент однородности по усталостным испытаниям, характеризующий разброс результатов испытаний, k 0 = 0,9, и деленный на k м – коэффициент надежности по материалу при расчетах на прочность, характеризующий как возможность изме­нения механических качеств материала в сторону их снижения, так и возможность уменьшения площадей сечения проката из-за установленных стандартами минусовых допусков; в соответствую­щих случаях следует учесть снижение первоначального предела выносливости нагрузками второго расчетного случая;

на прочность при постоянных напряжениях R = R п /k м – ­ частное от деления нормативного сопротивления (нормативного предела текучести) на соответствующий коэффициент надежности по материалу; для углеродистой стали k м = 1,05, а для низколегированной – k м = 1,1; таким образом, в отношении работы материала за предельное состояние принята не полная потеря его способности воспринимать нагрузку, а наступление больших пластических деформаций, препятствующих дальнейшему исполь­зованию конструкции;

на устойчивость -- произведение расчетного сопротивления на прочность на коэффициент уменьшения несущей способности сжимаемых (φ, φ вн) или изгибаемых (φ б) элементов.

Коэффициенты условий работы m К зависят от обстоятельств работы элемента, которые не учитываются расчетом и качеством материала, т. е. не входят ни в усилие N, ни в расчетное сопро­тивление R .Таких основных обстоятельств три, и поэтому можно принять

m K = m 1 m 2 m 3 , (178)

где m 1 – коэффициент, учитывающий ответственность рассчи­тываемого элемента, т. е. возможные последствия от разрушения; следует различать следующие случаи: разрушение не вызывает прекращения работы крана, вызывает остановку крана без повреж­дения или с повреждением других элементов и, наконец, вызы­вает разрушение крана; коэффициент m 1 может находиться в пре­делах 1–0,75, в особых случаях (хрупкое разрушение) m 1 = 0,6; m 2 – коэффициент, учитывающий возможные повреждения элементов конструкции в процессе эксплуатации, транспорти­ровки и монтажа, зависит от типов кранов; можно принимать т 2 = 1,0÷0,8; т 3 – коэффициент, учитывающий несовершенства расчета, связанные с неточным определением внешних сил или расчетных схем. Он должен устанавливаться для отдельных типов конструкций и их элементов. Можно принимать для плоских статически определимых систем т 3 = 0,9, .а для статически неоп­ределимых –1, для пространственных –1,1. Для изгибаемых элементов по сравнению с испытывающими растяжение-сжатие т 3 = 1,05. Таким образом, расчет по первому предельному состоянию на прочность при постоянных напряже­ниях производится по формуле

σ II <. m K R, (179)

а на сопротивление усталости, если переход к предельному со­стоянию осуществляется за счет увеличения уровня переменной напряженности, – по формуле (176), где расчетное сопротив­ление R определяется по одной из следующих формул:

R = k 0 σ -1К /k м;(180)

R N = k 0 σ -1К N /k м; (181)

R* = k 0 σ -1К /k м;(182)

R* N = k 0 σ -1К N /k м; (183)

где k 0 , k м - коэффициенты однородности по усталостным испы­таниям и надежности по материалу; σ –1K , σ –1KN , σ * –1K , σ * –1KN – пределы выносливости неограниченный, ограниченный, сниженный неограниченный, сниженный ограниченный соответственно.

Расчет по методу допускаемых напряжений производится по нагрузкам, приведенным в табл.4. Необходимо учитывать все примечания к табл. 3, кроме примечания 2.

Значения запасов прочности даны в табл. 5 и зависят от обстоятельств работы конструкции, не учитываемых расчетом, как например: ответственность, имея в виду последствия от разрушения; несовершенства расчета; отклонения в размерах и качестве материала.

Расчет по методу допускаемых напряжений производится в случаях отсутствия численных значений для коэффициентов перегрузки расчетных нагрузок для выполнения расчета по ме­тоду предельных состояний. Расчет на прочность производится по формулам:

σ II ≤ [σ ] = σ T / n II , (184)

σ III ≤ [σ ] = σ T / n III , (185)

где n II и n III – см. в табл. 5. При этом допускаемые напря­жения на изгиб принимают на 10 МПа (примерно на 5 %) больше, чем на растяжение (для Ст3 180 МПа), учитывая, что при из­гибе текучесть сначала проявляет­ся только в крайних фибрах и рас­пространяется затем постепенно на все сечение элемента, повышая его несущую способность, т. е. при из­гибе имеет место перераспределение напряжений по сечению за счет пла­стических деформаций.

При расчете на сопротивление усталости, если переход к предель­ному состоянию осуществляется за счет увеличения уровня переменной напряженности, должно выполняться одно из следую­щих условий:

σ пр ≤ [σ –1K ]; (186)

σ пр ≤ [σ –1K N ]; (187)

σ пр ≤ [σ * –1K ]; (188)

σ пр ≤ [σ * –1KN ]; (189)

где σ пр - приведенное напряжение; [σ –1K ], [σ –1K N ], [σ * –1K ], [σ * –1KN ] – допускаемые напряжения, при опреде­лении которых используется выражение [σ ] = σ –1K / n 1 или аналогично формулам (181) – (183) вместо σ –1K используются σ –1KN , σ * –1K и σ * –1KN . Запас прочности n I такой, как и при расчете статической прочности.

Рисунок 65 – Схема к расчету запаса по усталостной долговечности

Если переход к предельному состоянию осуществляется за счет увеличения числа циклов повторения переменных напряжений, то при расчете на ограниченную долговечность запас по усталост­ной долговечности (рис. 65) n д = Np/ N . Так как σ т пр Np = σ т –1K N б = σ т –1K N N ,

n д = (σ –1K N / σ пр) т = п т 1 (190)

и при n l = 1,4 и К = 4 n д ≈ 2,75, а при К = 2 n д ≈ 7,55.

При сложном напряженном состоянии наиболее соответствует экспериментальным данным гипотеза наибольших касательных октаэдрических напряжений, в соответствии с которой

(191)

и . Тогда запас прочности при симметричных циклах


т. е. п = n σ n τ / , (192)

где σ -IK и τ -lК - предельные напряжения (пределы выносливости), а σ а и τ a – амплитудные значения действующего симметричного цикла. Если циклы асимметричные, их следует привести к сим­метричным по формуле типа (168).

Прогрессивность.метода расчета по предельным состояниям заключается в том, что при расчетах по этому методу лучше учи­тывается действительная работа конструкций; коэффициенты перегрузки различны для каждой из нагрузок и определяются на основе статистического изучения изменчивости нагрузок. Кроме того, с помощью коэффициента надежности по материалу лучше учитываются механические качества материалов. В то время как при расчете по методу допускаемых напряжений надежность конструкции обеспечивается единым коэффициентом запаса, при расчете по методу предельных состояний вместо единого коэф­фициента запаса используется система трех коэффициентов: надежности по материалу, перегрузки и условий работы, уста­навливаемых на основании статистического учета условий работы конструкции.

Таким образом, расчет по допускаемым напряжениям есть частный случай расчета по первому предельному состоянию, когда коэффициенты перегрузки для всех нагрузок одинаковы. Однако надо подчеркнуть, что метод расчета по предельным состояниям понятия запаса прочности не использует. Его не использует также разрабатываемый в настоящее время для краностроения вероят­ностный метод расчета. Выполнив расчет по методу предельных состояний, можно определить значение получающегося при этом коэффициента запаса прочности по методу допускаемых напря­жений. Подставляя в формулу (173) значения N [см. фор­мулу (174)] и Ф [см. формулу (177)] и переходя к напряже­ниям, получим значение запаса прочности

п = Σσ i n i k M / (m K Σσ i ). (193)

Расчет на прочность при переменных напряжениях Расчет элементов строительных конструкций на выносливость сводится к проверке неравенства вида (19.3) Условие прочности при напряжениях, переменных во времени где (Тщад - максимальное нормальное напряжение; Rv - расчетное сопротивление усталости, зависящее от временного сопротивления материала; а - коэффициент, учитывающий число циклов нагружений; yv - коэффициент, зависящий от вида напряженного состояния и коэффициента асимметрии цикла. Например, для стальных конструкций коэффициент yv определяется по табл. 19.1. Таблица 19.1 Значение коэффициента yv для стальных конструкций "max Р Vv Растяжение Расчетное сопротивление усталости, а также коэффициент а учитывают качество обработки поверхности рассчитываемого элемента, его конструктивное исполнение, наличие концентраторов напряжений. Для частных видов конструкций соотношение (19.3) может принимать несколько отличную форму. Так, при расчете стальных конструкций мостов используется следующее неравенство: (19.4) где R - расчетное сопротивление при растяжении, сжатии и изгибе по пределу текучести материала; т - коэффициент условий работы; _ 1 а, 6 - коэффициенты, учитывающие марку стали и нестационарность нагружения; р - коэффициент асимметрии цикла переменных напряжений; (i - эффективный коэффициент концентрации напряжений. Коэффициент yv, определяемый выражением (19.5), описывает вид диаграммы предельных амплитуд с учетом концентрации напряжений, качества материала и обработки его поверхности, режима нагружения и других факторов. Пример 19.2. Раскос сквозного стального пролетного строения железнодорожного моста при прохождении поезда испытывает воздействие переменного осевого усилия. Наибольшее растягивающее усилие равно Nmnn= 1200 кН, наименьшее (сжимающее) усилие Wmr-=200 кН. Расчетное сопротивление R низколегированной стали марки 15XCHD равно 295 МПа. Коэффициент условий работы т = 0,9. Поперечное-сечение составное (рис. 19.20) и его площадь равна ЛпсШ, = 75 см. Рис. 19.20. Конструкция раскоса стального пролетного строения железнодорожного моста Решение. Коэффициент асимметрии цикла определяется так: IJVmml 1 Л"тах 6 В соответствии со СНиП 2.05.03-84 коэффициент Р принимается равным 1,5; параметры а = 0,72 и 5 = 0,24. Тогда Найдем максимальное нормальное напряжение: N^ 1200 103 ---=--7 = 160 МПа. Лпепо 75 10"4 Правая часть неравенства (19.4) принимает значение yvmR= 0,85 0,9 295 = 226,4 МПа>160 МПа. Следовательно, условие усталостной прочности раскоса выполняет ся. § 19.9. Понятие о малоцикловой усталости При многоцикловом усталостном разрушении, рассмотренном в предыдущих параграфах, материал деформируется упруго. Разрушение начинается в местах концентрации напряжений как результат развития зародившейся трещины и носит хрупкий характер (без появления Л заметных пластических деформаций). Другим видом усталости является малоцикловая усталость, под кото-Малоцикловая рой понимается разрушение при повторных упругопла-усталосгь стических деформациях; она отличается от многоцикло усталостного разрушения наличием макроскопической пластической деформации в зоне излома. Строгой границы между мног цикловом и малоцикловой устало-стями мровеетч нельз В СНиЛ 11-23- -81 отмечается, чти проверку стальных конструкций на малоцикловую про- Ответьте иа воп-чность следует выполнять при числе циклов, меньшем рос № 19 10 Ю\ Рассмотрим схематизированную диаграмму реформирования материала, показанную на рис. 19.21, а Рядом (рис. 19.21, 6) приведен график изменения напряжений во времени. При первом нагружении вдоль кривой ОАВ точка, изображающая состояние материала, движется вдоль диаграммы деформирования по линии О В Затем напряжения уменьшаются и та же точка движется по гинии BBiAi По достижении напряжением минимального значения начинается его возрастание и деформирование совершается Далее но замкнутой линии А,АВВ,. Размах деформаций за один цикл равен ^ "max £min> а размах пластических деформаций ^плтая 1L" 11 максимальная и минимальная пласти- I. ie e1Lir-д £ц ческие деформации ари циклическом изменении напряжений. Характер разрушения при малоциклозой усталости зависит от способности материала к накоплению пластически формаций при циклическом деформировании. Материалы назызаю*ся цикл 1чески стабильными, если остаточная деформация не меняется во зсех цикла*. Рассмотренный выше пример иллюстрирует особенности деформирования таких материалов. Для циклически разунрочняюшихся материалов хара-ктеоны увеличение остаточных Деформаций и рост суммарной пластической деформации. Исключим из этих уравнений перемещения и и v, для чего дважды дифференцируем первую строку по у, вторую - по х, третью - по х и у. Складывая верхние две строки и вычитая нижнюю, получим уравнение (20.6) Уравнение совместности деформаций Оно называется уравнением совместности деформаций, так как дает необходимую связь между деформациями, существующую при произвольных непрерывных функциях перемещений и, v (которые мы исключили). Если тело до деформации мысленно разбить на бесконечно малые «кирпичики», сообщить им деформации ех, еу и уху и попытаться сложить обратно в целое деформированное тело, то окажутся возможными два случая. В первом (рис. 20.5, а) все элементы плотно прилягут друг к другу. Такие деформации совместны, и им отвечает непрерывное поле перемещений. Во втором случае (рис. 20.5, б) между элементами возникают бесконечно малые разрывы и таким деформациям не отвечает какое-либо непрерывное поле перемещений. ц Поле деформаций, которому отвечает непрерывное поле перемещений, называют совместными деформациями. Деформации сов-В противном случае деформации называют несовместны- местные н несов-ми. местные Уравнения (20.3), (20.5) и (20.7) вместе составляют необходимые восемь уравнений, решение которых позволяет найти восемь неизвестных функций рассматриваемой плоской задачи. § 20.3. Определение напряжений по найденным из эксперимента перемещениям Ниже описано, как экспериментально получаются семейства интерференционных полос, представляющих изолинии какого-либо фактора, т. е. геометрическое место точек, в которых этот фактор имеет постоянное значение. Так, в методе муаров и голографичсской интерферометрии могут быть получены изолинии перемещений v = const и и = const. На рис. 20.6 привечена схема семейсг ва изолиний v;=const при плоском напряженном состоянии пластины. Покажем, как, используя уравнения теории упругости, перейти от перемещений к напряжениям. Формулы (20.5) дают возможность вычислить деформации Рис. 20.6. Численное определение деформаций по экспериментально полученному семейству изолиний перемещений для вертикальной линии. Частную производную (dv/dx)j=tgojj вычислим как тангенс угла наклона секущей, проведенной через точки (i - 1) и (/+ 1). Поступая аналох ично и для производной по координате у, найдем Численное диффе- (20.10) реицирование в плоской задаче Аналогично поступают и с семейством изолиний и=const Наметив сетку линий, параллельных осям координат х и у, по формулам (20.9) и (20.10) строят поле деформаций, а затем поле напряжений в исследуемой модели. Так как узловые точки ортогональной сетки в общем случае не совпадают с точками пересечения с изолиниями, то для вычисления деформаций и напряжений в узлах применяют формулы интерполирования. Существуют устройства и соответствующие программы для персональных ЭВМ, позволяющие обработать сетку изолиний в автоматическом режиме. Далее рассмотрим эксперимент с изгибаемой пластиной, для которой получено семейство изолиний прогибов vv = const (рис. 20.7, а). В теории изгиба пластин по аналогии с гипотезой плоских сечений используется гипотеза прямой нормали, согласно которой линия т-и, переходя в положение т,-и, остается прямой (рис. 20.7, б). Тогда при малых прогибах (px-dw/dx, (py-dwjdy и перемещения в горизонтальной плоскости произвольной точки с координатой z будут dw v= -(pyz= -z -. By (20.11) Подставляя формулы (20.11) в (20.9), получим 8 2 и* V" 82w 8хду 82w yxy=-2z (20.12) - Z еу--г Напряжения хху, распределенные по толщине пластины h по линейному закону (рис. 20.7, в), могут быть вычислены при известных деформациях (20.12) по закону Гука (20.8). Для определения вторых производных от функции прогибов вначале получают по формулам интерполирования поле прогибов в узлах ортогональной сетки линий, фрагмент которой показан на рис. 20.8. Тогда производные в точке К можно вычислить по формулам численного дифференцирования:

В подавляющем большинстве случаев расчеты на прочность деталей, работающих при переменных напряжениях, выполняют как проверочные. Это связано в первую очередь с тем, что общий коэффициент снижения предела выносливости или в процессе конструирования детали можно выбрать лишь ориентировочно, так как у расчетчика (конструктора) на этой стадии работы имеются лишь весьма приближенные представления о размерах и форме детали. Проектный расчет детали, служащий для определения ее основных размеров, обычно выполняется приближенно без учета переменности напряжений, но по пониженным допускаемым напряжениям.

После выполнения рабочего чертежа детали производится ее уточненный проверочный расчет с учетом переменности напряжений, а также конструктивных и технологических факторов, влияющих на усталостную прочность детали. При этом определяют расчетные коэффициенты запаса прочности для одного или нескольких предположительно опасных сечений детали. Эти коэффициенты запаса сопоставляют с теми, которые назначают или рекомендуют для деталей, аналогичных проектируемой при заданных условиях ее эксплуатации. При таком проверочном расчете условие прочности имеет вид

Величина требуемого коэффициента запаса прочности зависит от целого ряда обстоятельств, основными из которых являются: назначение детали (степень ее ответственности), условия работы; точность определения действующих на нее нагрузок, надежность сведений о механических свойствах ее материала, значениях коэффициентов концентрации напряжений и т. п. Обычно

В случае, если расчетный коэффициент запаса прочности ниже требуемого (т. е. прочность детали недостаточна) или значительно выше требуемого (т. е. деталь неэкономична), приходится вносить те или иные изменения в размеры и конструкцию детали, а в отдельных случаях даже изменять ее материал.

Рассмотрим определение коэффициентов запаса прочности при одноосном напряженном состоянии и при чистом сдвиге. Первый из этих видов напряженного состояния, как известно, возникает при растяжении (сжатии), прямом или косом изгибе и совместном изгибе и растяжении (или сжатии) бруса. Напомним, что касательные напряжения при изгибе (прямом и косом) и сочетании изгиба с осевым нагружением в опасной точке бруса, как правило, невелики и при расчете на прочность ими пренебрегают, т. е. считают, что в опасной точке возникает одноосное напряженное состояние.

Чистый сдвиг возникает в точках работающего на кручение бруса круглого поперечного сечения.

В большинстве случаев коэффициент запаса прочности определяют в предположении, что рабочий цикл напряжений, возникающих в рассчитываемой детали при ее эксплуатации, подобен предельному циклу, т. е. коэффициенты асимметрии R и характеристики рабочего и предельного циклов одинаковы.

Наиболее просто коэффициент запаса прочности можно определить в случае симметричного цикла изменения напряжений, так как пределы выносливости материала при таких циклах обычно известны, а пределы выносливости рассчитываемых деталей можно вычислить по взятым из справочников значениям коэффициентов снижения пределов выносливости Коэффициент запаса прочности представляет собой отношение предела выносливости, определенного для детали, к номинальному значению максимального напряжения, возникающего в опасной точке детали. Номинальным является значение напряжения, определенное по основным формулам сопротивления материалов, т. е. без учета факторов, влияющих на величину предела выносливости (концентрации напряжений и т. п.).

Таким образом, для определения коэффициента запаса прочности при симметричных циклах получаем следующие зависимости:

при изгибе

при растяжении-сжатии

при кручении

При определении коэффициента запаса прочности в случае асимметричного цикла возникают затруднения, связанные с отсутствием экспериментальных данных, необходимых для построения участка линии предельных напряжений (см. рис. 7.15). Заметим, что практически нет надобности в построении всей диаграммы предельных амплитуд, так как для циклов с пределами выносливости, большими предела текучести, коэффициент запаса должен определяться по текучести (для пластичных материалов), т. е. расчет должен выполняться, как в случае статического действия нагрузки.

При наличии экспериментально полученного участка AD предельной кривой коэффициент запаса можно бы определить графоаналитическим способом. Как правило, эти экспериментальные данные отсутствуют и кривую AD приближенно заменяют прямой, построенной по каким-либо двум точкам, координаты которых определены экспериментально. В результате получают так называемую схематизированную диаграмму предельных амплитуд, которой и пользуются при практических расчетах на прочность.

Рассмотрим основные способы схематизации безопасной зоны диаграммы предельных амплитуд.

В современной расчетной практике наиболее часто применяется диаграмма Серенсена-Кинасошвили, при построении которой участок AD заменяют прямой линией, проведенной через точки А и С, соответствующие предельным симметричному и отнулевому циклам (рис. 9.15, а). Достоинством этого способа является его относительно высокая точность (аппроксимирующая прямая АС, близка к кривой недостаток его заключается в том, что необходимо кроме величины предела выносливости при симметричном цикле иметь опытные данные о величине предела выносливости ) также и при отнулевом цикле.

При пользовании этой диаграммой коэффициент запаса определяется по выносливости (усталостному разрушению), если луч циклов, подобных заданному, пересекает прямую и по текучести, - если указанный луч пересекает линию

Несколько меньшую, но во многих случаях достаточную для практических расчетов точность дает метод, основанный на проксимации участка AD предельной кривой отрезком прямой линии (рис. 9.15,б), проведенной через точки А (соответствующую симметричному циклу) и В (соответствующую предельным постоянным напряжениям).

Достоинством рассматриваемого способа является меньшее по сравнению с предыдущим количество требуемых экспериментальных данных (не нужны данные о величине предела выносливости при отнулевом цикле). Какой из коэффициентов запаса, по усталостному разрушению или по текучести, меньше, определяют так же, как и в предыдущем случае.

В третьем типе схематизированных диаграмм (рис. 9.15, в) аппроксимирующую прямую проводят через точку А и некоторую точку Р, абсцисса которой определяется в результате обработки имеющихся экспериментально полученных диаграмм предельных напряжений. Для стали с достаточной точностью можно принимать, что отрезок OP - s равен Точность таких диаграмм почти не отличается от точности диаграмм, построенных по методу Серенсена - Кинасошвили.

Особенно проста схематизированная диаграмма, в которой безопасная зона ограничена прямой AL (рис. 9.15, г). Легко видеть, что расчет по такой диаграмме весьма неэкономичен, так как на схематизированной диаграмме линия предельных напряжений расположена значительно ниже действительной линии предельных напряжений.

Кроме того, такой расчет не имеет определенного физического смысла, так как неизвестно, какой коэффициент запаса, по усталости или по текучести, будет определен. Несмотря на указанные серьезные недостатки, диаграмма по рис. 9.15, а иногда используется в зарубежной практике; в отечественной практике в последние годы такая диаграмма не применяется.

Выведем аналитическое выражение для определения коэффициента запаса прочности по усталостному разрушению на основании рассмотренных схематизированных диаграмм предельных амплитуд. На первом этапе вывода не будем учитывать влияние факторов, снижающих предел выносливости, т. е. сначала получим формулу, пригодную для нормальных лабораторных образцов.

Допустим, что точка N, изображающая рабочий цикл напряжений, находится в области (рис. 10.15) и, следовательно, при возрастании напряжений до величины, определяемой точкой наступит усталостное разрушение (как уже указывалось, предполагается, что рабочий и предельный циклы подобны). Коэффициент запаса по усталостному разрушению для цикла, изображенного точкой N, определяется как отношение

Проведем через точку N прямую , параллельную прямой и горизонтальную прямую NE.

Из подобия треугольников следует, что

Как следует из рис. 10.15,

Подставим полученные значения величин ОА и в равенство (а):

Аналогично в случае переменных касательных напряжений

Значения зависят от принятого для расчета типа схематизированной диаграммы предельных напряжений и от материала детали.

Так, если принять диаграмму Серенсена - Кинасошвили (см. рис. 9.15, а), то

аналогично,

По схематизированной диаграмме, изображенной на рис. 9.15, б,

(20.15)

аналогично,

(21.15)

Значения и при расчете по методу Серенсена - Кинасошвили можно принимать по приведенным данным (табл. 1.15).

Таблица 1.15

Значения коэффициентов для стали

При определении коэффициента запаса прочности для конкретной детали надо учесть влияние коэффициента снижения предела выносливости Опыты показывают, что концентрация напряжений, масштабный эффект и состояние поверхности отражаются только на величинах предельных амплитуд и практически не влияют на величины предельных средних напряжений. Поэтому в расчетной практике принято коэффициент снижения предела выносливости относить только к амплитудному напряжению цикла. Тогда окончательные формулы для определения коэффициентов запаса прочности по усталостному разрушению будут иметь вид: при изгибе

(22.15)

при кручении

(23.15)

При растяжении-сжатии следует пользоваться формулой (22.15), но вместо подставлять в нее предел выносливости при симметричном цикле растяжения-сжатия.

Формулы (22.15), (23.15) действительны при всех указанных способах схематизации диаграмм предельных напряжений; изменяются лишь величины коэффициентов

Формула (22.15) получена для циклов с положительными средними напряжениями для циклов с отрицательными (сжимающими) средними напряжениями следует полагать т. е. исходить из предположения о том, что в зоне сжатия линия предельных напряжений параллельна оси абсцисс.

Многие детали машин в процессе работы испытывают переменные во времени напряжения (чаще циклические): детали кривошипно-шатунного механизма, ось транспортного средства, валы редукторов и т.д. Опыт показывает, что при переменных напряжениях после некоторого числа циклов может наступить разрушение детали, в то время как при том же неизменном во времени напряжении разрушения не происходит. Пример - проволока. Число циклов до разрушения зависит от материала и амплитуды напряжений и меняется в широких пределах. Разрушение материала при действии переменных напряжений называется усталостью.

Рассказать о механизме разрушения. Он носит местный характер. Накопление усталостных повреждений приводит к образованию макротрещины. К разрушению приводит развитие усталостной трещины.

Чаще всего встречается и наиболее опасен для материала гармонический закон изменения напряжений. Цикл напряжений характеризуется следующими параметрами:

Максимальные и минимальные напряжения цикла;

Среднее напряжение цикла

Амплитуда цикла: ;

Коэффициент асимметрии цикла:

Рисунок 1. Характеристики цикла напряжений

Такой цикл называется симметричным.

Такой цикл называется пульсирующим.

Все термины и определения справедливы и для переменных касательных напряжений, если заменить на.


Предел выносливости

Для расчетов на прочность при переменных напряжениях необходимо знать механические характеристики материалов, которые определяются путем специальных испытаний. Берется гладкий полированный стержень круглого сечения и длиной. Его подвергают симметричному циклу при различных амплитудах. Дать схему испытательной машины и методику проведения испытаний. Образец доводят до разрушения и определяют число циклов до разрушения. Полученная кривая называется кривой усталости или кривой Велера. (рисунок 2).

Рисунок 2. Кривая усталости

Эта кривая примечательна тем, что, начиная с некоторого напряжения, она идет практически горизонтально. Это значит, что при напряжениях меньших некоторого предельного напряжения образец может выдержать бесчисленное множество циклов.

Максимальные переменные напряжения, который материал способен выдержать без разрушения, при любом числе циклов, называют пределом выносливости и обозначают.

Опыты обычно производят до базового числа циклов. Для углеродистых сталей принимают, для закаленных сталей и цветных металлов. Опытным путем установлены эмпирические зависимости:

Факторы, влияющие на величину предела выносливости

Предел выносливости деталей зависит не только от свойств материала, но и от их формы, размеров, способов изготовления.

Влияние концентрации напряжений.

В местах резкого изменения размеров ПС детали (отверстия, выточки, галтеки, шпоночные пазы, резьбы) как известно, возникает местное повышение напряжений. Это явление называется концентрацией напряжений. Она снижает детали по сравнению с образца. Это снижение учитывается эффективным коэффициентом концентрации напряжений, который определяется экспериментально. Он равен отношению пределов выносливости гладкого образца к образца с данным концентратором напряжений.

Значения приводятся в справочниках.

Влияние размеров деталей.

Экспериментально установлено, что с увеличением размеров образца, понижается. Влияние размеров образца на учитывается масштабным коэффициентом, который определяется экспериментально и равен отношению

Обычно берут. Они приводятся в справочниках.

Влияние состояние поверхности детали.

Наличие на поверхности детали рисок, царапин, неровностей приводит к уменьшению предела выносливости детали. Состояние поверхности детали зависит от вида механической обработки. Влияние состояния поверхности на величину детали учитывается коэффициентом, который определяется экспериментально и равен:

Этот коэффициент приводится в справочниках.

Все вышеуказанные факторы можно учесть одним коэффициентом изменения предела выносливости.

Тогда предел выносливости детали

Если провести испытание стандартного образца из исследуемого материала в условиях несимметричного цикла напряжений, то получим диаграмму предельных напряжений, показанную на рисунке 3.

Рисунок 3. Диаграмма предельных напряжений

Рассказать о методике проведения испытаний и построения диаграммы.

Эта диаграмма позволяет судить о близости рабочих условий к предельным. Для этого на диаграмму наносится рабочая точка (В)с координатами

где и расчетные значения среднего и амплитудного напряжения в детали. Здесь амплитуда напряжения увеличена с учетом снижения предела выносливости детали. По степени близости рабочей точки к предельной кривой судят об опасности рабочих условий. Если рабочая точка окажется за диаграммой, то непременно произойдет усталостное разрушение.

Построение этой диаграммы требует больших затрат времени и материальных ресурсов. Поэтому реальную диаграмму схематизируют прямой CD. тогда эту диаграмму можно построить без проведения экспериментов.

Определение коэффициента запаса при переменных напряжениях

Коэффициент запаса очевидно равен отношению отрезка ОА к отрезку ОВ (рисунок 3). После геометрических построений получим:

где коэффициент чувствительности материала к ассиметрии цикла.

При действии переменных касательных напряжений

Коэффициенты приводятся в справочниках.

При одновременном действии переменных нормальных и касательных напряжений общий коэффициент запаса

← Вернуться

×
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:
Я уже подписан на сообщество «i-topmodel.ru»