Сбои машины образуют пуассоновский поток с интенсивностью. Процесс пуассона

Подписаться
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:

В пуассоновском потоке событий (стационарном и нестационарном) число событий потока , попадающих на любой участок, распределено по закону Пуассона  


Таким образом, для исследуемой системы S с дискретными состояниями и непрерывным временем переходы из состояния в состояние происходят под действием пуассоновских потоков событий с определенной интенсивностью Я.  

Представим автомобиль как некоторую систему S с дискретными состояниями iSj,. 2. .... Sn, которая переходит из состояния S/ в состояние Sj(i - 1, 2,. .., n,j = I, 2,. .., и) под воздействием пуассоновских потоков событий (отказов) с интенсивностями Хд. Будем рассматривать следующие состояния автомобиля, в которых он может находиться в процессе эксплуатации и которые характеризуются целодневными простоями  

Пуассоновский поток событий - это поток, обладающий двумя свойствами ординарностью и отсутствием последействия.  

В данном параграфе устанавливается связь между пуассоновскими потоками событий и с непрерывным временем. Показывается, как используется интенсивность пуассоновских стационарных потоков в качестве плотностей вероятностей переходов системы из состояния в состояние при анализе моделей конкретных ситуаций.  

Между пуассоновскими потоками событий и дискретными марковскими процессами с непрерывным временем имеется тесная связь.  

Связь пуассоновских потоков событий с дискретными марковскими процессами с непрерывным временем  

То есть технически, марковскую модель с непрерывным временем построить проще, чем модель с дискретным временем, хотя проблема подчинения пуассоновскому закону распределения всех потоков событий , переводящих элементы системы из состояния в состояние, остается.  

Можно считать, что события, переводящие автомобиль из состояния в состояние, представляют собой потоки событий (например, потоки отказов). Если все потоки событий , переводящие систему (автомобиль) из состояния в состояние, пуассоновские (стационарные или нестационарные), то процесс, протекающий в системе, будет марковским, а плотности вероятности перехода Ху в непрерывной цепи Маркова представляют собой интенсивности потока событий, переводящего систему из состояния Si в состояние Sj. Например, Х03 - интенсивность потока отказов автомобиля, который переводит автомобиль из состояния исправен, работает в состояние находится в ТР.  

Допущения о пуассоновском характере потока событий и о показательном распределении промежутков времени между событиями ценны тем, что позволяют на практике применить мощный аппарат марковских случайных процессов .  

Пуассоновский стационарный (простейший) поток событий  

Пуассоновский стационарным (простейшим) поток событий  

Пуассоновский нестационарный поток событий  

Рассмотрим нестационарный пуассоновский поток с интенсивностью Mf), некоторый промежуток времени длиной г>0, начинающийся с момента t0 (и заканчивающийся, следовательно, в момент +г) и дискретную случайную величину Х р г) - число событий, наступающих в потоке за промежуток времени от ta до t0+r.  

Определение 6.2. Элементом вероятности появления события в нестационарном пуассоновском потоке называется вероятность >,(АО появления события за элементарный (достаточно малый) промежуток времени от t0 до t0+bt.  

Теорема 6.2. Для элемента вероятности появления события за элементарный промежуток времени от t0 до t0+Af в нестационарном пуассоновском потоке с интенсивностью A(t) имеет место приближенная формула  

Основное характеристическое свойство нестационарного пуассоновского потока состоит в том, что вероятность наступления определенного числа событий за временной промежуток зависит не только от его длины, но и от момента его начала.  

Одной из основных стохастических характеристик нестационарного пуассоновского потока является дискретная случайная величина X(t т), представляющая собой случайное число событий, наступающих в потоке за промежуток [ t.+t.  

Другой основной стохастической характеристикой нестационарного пуассоновского потока является случайный интервал времени T(tB) между двумя соседними событиями, первое из которых наступило в момент t0.  

Доказательство Вероятность p (t At) того, что система S, находившаяся в момент времени t в состоянии sp за промежуток времени от t до t+Ы перейдет из него в состояние s (см. 4) равна элементу вероятности pfa t) появления события в пуассоновском потоке П.. на элементарном участке от t до +Д (см. Определение 5.11). Но (см. (4.3))  

Система, в которой протекает дискретный марковский процесс с непрерывным временем, перескакивает из одного состояния х в другое xj не самопроизвольно, а под воздействием определенного события, которое мы можем отнести к событиям некоторого пуассоновского потока П.. и считать, таким образом, что переход системы из состояния х в состояние х происходит под воздействием всего потока /L. Привлечение всего потока П.. дает нам возможность рассматривать интенсивность А() этого потока.  

Рассмотрим более подробно случай пуассоновского распределения спроса. Функция затрат будет иметь вид, аналогичный (5.6.18), с заменой интегрирования по х суммированием. Найдем плотность 1> (т) распределения времени дефицита. Распределение времени наступления k -го события пуассоновского потока подчинено закону Эрланга k -го порядка. Дефицит начинается при израсходовании всего запаса S и еще одной единицы, так что  

Общий поток отказов, связанный с попаданием автомобилей исследуемой группы в ТО-2, получается путем наложения (суперпозиции) потоков ТО-2 этих автомобилей. Как показывают расчеты, распределение интервала пробега между событиями в этом потоке подчиняется показательному закону . При этом поток ТО-2 всех исследуемых автомобилей является пуассоновским.  

Образ потока отказов, связанного со списанием автомобиля, является условным. Действительно, если автомобиль отказывает в тот момент, когда происходит первое событие данного потока, то совершенно все равно, продолжается после этого поток отказов или прекращается судьба автомобиля от этого уже не зависит. В случае когда элемент (автомобиль) не подлежит восстановлению, поток отказов является пуассоновским.  

Каждый из входящих в блок агрегатов является сложной системой , состоящей из большого числа элементов. Отказ каждого из них может привести к утрате способности выполнения поставленной задачи всего агрегата. Поток отказов агрегата во времени образуется в результате наложения множества событий - потоков отказов элементов, входящих в его состав. При решении практической задачи отказы в элементах можно рассматривать как независимые (или слабозависимые) и ординарные события, поэтому для суммарного потока отказов всего агрегата правомерно применение предельной теоремы потоков в теории случайных процессов . Данная теорема определяет условия, при которых сумма независимых (или слабо зависимых)

Восстанавливаемые объекты после ремонта продолжают эксплуатироваться по прямому назначению. Надежность восстанавливаемых объектов принято оценивать по характеристикам потока отказов. В общем случае потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени. В теории надежности восстанавливаемых объектов в основном рассматриваются простейшие потоки событий, характеризующиеся ординарностью, стационарностью и отсутствием последействия (такие потоки событий чаще всего встречаются на практике).

Поток событий называется ординарным, если вероятность появления двух и более отказов в единичном интервале времени пренебрежимо мала по сравнению с вероятностью появления одного отказа. Таким образом, отказы в системе возникают по одному.

Поток событий называется стационарным, если вероятность попадания того или иного числа событий на интервал времени т зависит только от длины интервала и не зависит от того, где именно на оси расположен этот интервал. Стационарность потока событий означает, что плотность потока постоянна. Очевидно, что при наблюдении поток может иметь сгущения и разрежения. Однако для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный интервал времени, остается постоянным для всего рассматриваемого периода.

Отсутствие последействия в простейшем потоке событий означает, что вероятность появления отказов в единичном интервале времени не зависит от возникновения отказов во всех предыдущих интервалах времени, т. е. отказы возникают независимо друг от друга. В электронно-вычислительных средствах поток отказов равен сумме потоков отказов отдельных устройств. Если каждый в отдельности поток оказывает на суммарный поток достаточно равномерное и небольшое влияние, то суммарный поток будет простейшим.

Пусть простейший поток отказов обладает следующими свойствами.

1. Время между отказами распределено по экспоненциальному закону с некоторым параметром А, (формулы (4.16)-(4.21)):

Следовательно, и Т 0 - наработка до первого отказа распределена по экспоненциальному закону с тем же параметром X (средняя наработка до первого отказа есть математическое ожидание Т :

При таких условиях интенсивность отказов X(t) оказывается постоянной величиной:

2. Пусть r(t) - число отказов за время t (r(t) является случайной величиной). Вероятность того, что за время t произойдет m отказов при интенсивности отказов X, определяется законом Пуассона (см. (4.22)):

3. Среднее число отказов за время t равно:

4. Вероятность того, что за время t не произойдет ни одного отказа, равна: P(t) = е ~ и.

Описанный простейший поток событий также называют стационарным пуассоновским потоком. Как уже было сказано выше, такой поток характерен для сложных высоконадежных объектов.

Процесс функционирования восстанавливаемого объекта можно описать как последовательность чередующихся интервалов работоспособности и простоя, связанного с восстановлением. Предполагается, что отказ объекта немедленно фиксируется и с этого же момента начинается восстановительная процедура. Интервалы работоспособности (мы предполагаем 100%-ное восстановление объекта) являются независимыми и одинаково распределенными случайными величинами, при этом они не зависят от интервалов восстановления, которые также являются независимыми и одинаково распределенными случайными величинами (скорее всего, с другим распределением). Каждая из этих последовательностей интервалов формирует свой простейший поток событий.

Напомним, что в случае восстанавливаемых объектов основной характеристикой является параметр потока отказов. Эксплуатация таких объектов может быть описана следующим образом: в начальный момент времени объект начинает работу и работает до отказа, после отказа происходит восстановление и объект вновь работает до отказа и т. д. Параметр потока отказов определяется через ведущую функцию Q(t) данного потока, представляющую собой математическое ожидание числа отказов за время 1:

где r(t) - число отказов за время t.

Параметр потока отказов со(0 характеризует среднее число отказов, ожидаемых в малом интервале времени, и определяется по формуле (2.9):

Ведущая функция может быть выражена через параметр потока отказов:

Для стационарных пуассоновских потоков, как было сказано выше, интенсивность отказов - величина постоянная и равна X; при этом она совпадает с параметром потока отказов. Действительно, по свойству 3 стационарного пуассоновского потока среднее число отказов за время г равно: Q.(t) = M = Xt, следовательно,

Средняя наработка на отказ. Как уже говорилось, этот показатель представляет собой отношение наработки к математическому ожиданию числа отказов в течение этой наработки. Поскольку при стационарном потоке отказов M Тематики информационные технологии в целом EN exponential arrivals … Справочник технического переводчика

Случайный процесс X(t).с независимыми приращениями X(t2) X(t1), t2>tl имеющими Пуассона распределение. В однородном П. п. для любых t2 > t1 (1) Коэффициент l>0 наз. интенсивностью пуассоновского процесса X(t). Траектории П. п. X(t).… … Математическая энциклопедия

Случайный процесс, описывающий моменты наступления 0 Большая советская энциклопедия

Случайная последовательность моментов времени, в к рые происходят события нек рого потока событий (напр., потока вызовов, приходящих на телефонную станцию), удовлетворяющая условию независимости и одинаковой показательной распределенности… … Математическая энциклопедия

- (теория очередей) раздел теории вероятностей, целью исследований которого является рациональный выбор структуры системы обслуживания и процесса обслуживания на основе изучения потоков требований на обслуживание, поступающих в систему и выходящие… … Википедия

За эталон потока в моделировании принято брать пуассоновский поток .

Пуассоновский поток - это ординарный поток без последействия.

Как ранее было указано, вероятность того, что за интервал времени (t 0 , t 0 + τ ) произойдет m событий, определяется из закона Пуассона:

где a - параметр Пуассона.

Если λ (t ) = const(t ), то это стационарный поток Пуассона (простейший). В этом случае a = λ · t . Если λ = var(t ), то это нестационарный поток Пуассона .

Для простейшего потока вероятность появления m событий за время τ равна:

Вероятность непоявления (то есть ни одного, m = 0) события за время τ равна:

Рис. 28.2 иллюстрирует зависимость P 0 от времени. Очевидно, что чем больше время наблюдения, тем вероятность непоявления ни одного события меньше. Кроме того, чем более значение λ , тем круче идет график, то есть быстрее убывает вероятность. Это соответствует тому, что если интенсивность появления событий велика, то вероятность непоявления события быстро уменьшается со временем наблюдения.

Вероятность появления хотя бы одного события (P ХБ1С) вычисляется так:

так как P ХБ1С + P 0 = 1 (либо появится хотя бы одно событие, либо не появится ни одного, - другого не дано).

Из графика на рис. 28.3 видно, что вероятность появления хотя бы одного события стремится со временем к единице, то есть при соответствующем длительном наблюдении события таковое обязательно рано или поздно произойдет. Чем дольше мы наблюдаем за событием (чем более t ), тем больше вероятность того, что событие произойдет - график функции монотонно возрастает.

Чем больше интенсивность появления события (чем больше λ ), тем быстрее наступает это событие, и тем быстрее функция стремится к единице. На графике параметр λ представлен крутизной линии (наклон касательной).

Если увеличивать λ , то при наблюдении за событием в течение одного и того же времени τ , вероятность наступления события возрастает (см. рис. 28.4 ). Очевидно, что график исходит из 0, так как если время наблюдения бесконечно мало, то вероятность того, что событие произойдет за это время, ничтожна. И наоборот, если время наблюдения бесконечно велико, то событие обязательно произойдет хотя бы один раз, значит, график стремится к значению вероятности равной 1.

Изучая закон, можно определить, что: m x = 1/λ , σ = 1/λ , то есть для простейшего потока m x = σ . Равенство математического ожидания среднеквадратичному отклонению означает, что данный поток - поток без последействия. Дисперсия (точнее, среднеквадратичное отклонение) такого потока велика. Физически это означает, что время появления события (расстояние между событиями) плохо предсказуемо, случайно, находится в интервале m x σ < τ j < m x + σ . Хотя ясно, что в среднем оно примерно равно: τ j = m x = T н /N . Событие может появиться в любой момент времени, но в пределах разброса этого момента τ j относительно m x на [–σ ; +σ ] (величину последействия). На рис. 28.5 показаны возможные положения события 2 относительно оси времени при заданном σ . В данном случае говорят, что первое событие не влияет на второе, второе на третье и так далее, то есть последействие отсутствует.

По смыслу P равно r (см. лекцию 23. Моделирование случайного события. Моделирование полной группы несовместных событий), поэтому, выражая τ из формулы (*) , окончательно для определения интервалов между двумя случайными событиями имеем:

τ = –1/λ · Ln(r ) ,

где r - равномерно распределенное от 0 до 1 случайное число, которое берут из ГСЧ, τ - интервал между случайными событиями (случайная величина τ j ).

Пример 1 . Рассмотрим поток изделий, приходящих на технологическую операцию. Изделия приходят случайным образом - в среднем восемь штук за сутки (интенсивность потока λ = 8/24 [ед/час]). Необходимо промоделировать этот процесс в течение T н = 100 часов. m = 1/λ = 24/8 = 3, то есть в среднем одна деталь за три часа. Заметим, что σ = 3. На рис. 28.6 представлен алгоритм, генерирующий поток случайных событий.

На рис. 28.7 показан результат работы алгоритма - моменты времени, когда детали приходили на операцию. Как видно, всего за период T н = 100 производственный узел обработал N = 33 изделия. Если запустить алгоритм снова, то N может оказаться равным, например, 34, 35 или 32. Но в среднем, за K прогонов алгоритма N будет равно 33.33… Если посчитать расстояния между событиями t сi и моментами времени, определяемыми как 3 · i , то в среднем величина будет равна σ = 3.

Если число n испытаний достаточно велико, а вероятность p наступления события А в независимых испытаниях мала, то для нахождения вероятности используется теорема Пуассона : Если в n независимых испытаниях вероятность p наступления события А в каждом из них постоянна и мала, а число испытаний достаточно велико, то вероятность того, что событие А наступит k раз, вычисляется по формуле , где .

Эта формула называется формулой Пуассона .

Пример 15 . Вероятность попадания в самолёт при каждом выстреле из пулемёта равна 0.001. Производится 3000 выстрелов. Найти вероятность попадания в самолёт: а) один или два раза; б) хотя бы один раз.

Решение . По условию примера n =300, p =0.001, .

а) Обозначим событие A={попадание в самолёт один или два раза}. Тогда .

б) Обозначим событие B={попадание в самолёт хотя бы один раз}. Тогда .

Потоком событий называется последовательность событий, которые наступают одно за другим в случайные моменты времени.

Например, поток вызовов в сфере обслуживания (ремонт телевизоров, вызовы скорой помощи и др.), поток вызовов на телефонной станции, отказ в работе отдельных частей некоторой системы и т.д.

Поток называется простейшим , если выполняются следующие условия:

Вероятность появления события зависит от длины промежутка времени t ;

Вероятность появления числа событий на любом промежутке времени не зависит от того, какое число событий наступило до начала этого промежутка;

Вероятность наступления двух или большего числа событий за достаточно малый промежуток времени мала и чем меньше , тем меньше становится вероятность.

При выполнении этих условий справедливо следующее утверждение:

Вероятность того, что случайное событие за время t наступит k раз, определяется по формуле

,

где - среднее число событий, наступающих в единицу времени.

Пример 16 . На ткацких станках, обслуживаемых ткачихой, в течение часа происходит 90 обрывов нити. Какова вероятность того, что за 4 минуты произойдёт: 1) один обрыв; 2) хотя бы один обрыв.

Решение . По условию t =4. Среднее число обрывов за одну минуту равно . Тогда .



1) . 2) .

Вопросы для самоконтроля знаний

1. Что называется суммой совместных событий?

2. Что называется суммой несовместных событий?

3. Как формулируется теорема сложения вероятностей несовместных событий?

4. Чему равна сумма вероятностей противоположных событий?

5. Что называется произведением двух событий?

6. Какие события называются независимыми?

7. Как формулируется теорема умножения вероятностей независимых событий?

8. Какие события называются зависимыми?

9. Что называется условной вероятностью?

10. Как формулируется теорема умножения вероятностей зависимых событий?

11. Что называется полной вероятностью события и как записывается формула полной вероятности?

12. Как записывается формула Байеса?

13. Какие испытания называются независимыми и как записывается формула Бернулли?

14. Как формулируется локальная теорема Лапласа?

15. Как формулируется интегральная теорема Лапласа?

16. Как формулируется теорема Пуассона?

← Вернуться

×
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:
Я уже подписан на сообщество «i-topmodel.ru»