Теория очередей. Общие понятия теории очередей Теория очередей математические модели очереди

Подписаться
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:

Каждый из нас не раз в своей жизни стоял в очередях и знает, как много времени это отнимает.

Многие модели, призванные решить или оптимизировать эту проблему, требуют сложных математических формулировок .

Очередь - это линия ожидания . Теория очередей - часть более широкой теории, в рамках которой проводятся оперативные исследования и создаются математические модели. Все это делается с одной целью - решить проблемы, которые создает стояние в очередях. Здесь важно найти компромиссный вариант, учитывающий систему расходов и среднее время ожидания в очереди. анализировать телефонную систему в Копенгагене, чтобы разрешить проблему загруженности телефонных линий.

Первопроходцем в теории очередей был датский математик Агнер Краруп (1878-1929), взявшийся
анализировать телефонную систему в Копенгагене, чтобы разрешить проблему загруженности телефонных линий.

В теории изучения очередей существуют законы Харпера , подобные знаменитым законам Мерфи.

  • Первый закон Харпера : неважно, в какую очередь ты становишься - всегда есть одна, движущаяся быстрее остальных.
  • Второй закон Харпера : если ты переходишь в другую очередь, та, которую ты покинул, начинает двигаться быстрее.

Проблема очередей

Современный человек проводит в ожидании более или менее значительную часть своей жизни. Разве есть среди нас те, кто никогда не стоял в очереди? Мир ожидания очень разнообразен: очереди машин на въезде на платную дорогу, очереди самолетов на выезде на взлетную полосу и, как следствие, очереди пассажиров к стойкам регистрации; очередь к банкоматам в больших зданиях, очередь на прием к врачу или очередь телефонных звонков, которые должны быть обработаны на пожарной станции… Это лишь некоторые примеры. пытается создать модели, поддающиеся последующей математической обработке.

Модели очередей

Некоторые модели очередей очень просты, другие требуют применения сложных математических теорий. Первичная классификация разбивает их на две большие группы.

Детерминированная очередь - наиболее простая модель, которую можно заранее спрогнозировать, опираясь на известные условия, например, временные интервалы прибытия и ожидания. Это «очередь без сюрпризов».

Вероятностная очередь не может быть описана без применения вероятностей. Это более реалистичная модель, чем предыдущая. В дождливый день, например, есть большая вероятность того, что увеличатся очереди на стоянках такси и уменьшатся очереди в кассы зоопарка.

Ожидание того или иного вида обслуживания является частью нашей повседневной жизни. Мы ожидаем, чтобы пообедать в ресторане, мы стоим в очереди к кассам в магазинах и выстраиваемся в очередь в почтовых отделениях. Очередь возникает практически во всех присутственных местах: налоговых инспекциях, паспортных столах, страховых компаниях и пр. Феномен ожидания характерен не только для людей: работы, поставленные в очередь для выполнения; группа пассажирских самолетов, ожидающих разрешения на посадку в аэропорту; автомобили, движение которых приостановлено сигналом светофора на пути их следования, грузовые суда, ожидающие погрузки/разгрузки в порту, и т.п.

Изучение очередей в системах массового обслуживания (СМО) озволяет определить критерии функционирования обслуживающей системы, среди которых наиболее значимыми являются среднее время ожидания в очереди и средняя длина очереди. Эта информация используется затем для выбора надлежащего уровня обслуживания, что продемонстрировано в следующем примере.

Пример 2.6.1. Физические лица, сдающие декларацию о доходах, жалуются на медленное обслуживание. В настоящее время в данном подразделении работают три налоговых инспектора. В результате расчетов, формулы для которых мы рассмотрим ниже, обнаружена следующая зависимость между числом инспекторов и временем ожидания обслуживания.

Число инспекторов 1 2 3 4 5 6 7

Среднее время ожидания 80.2 50.3 34.9 24.8 14.912.9 9.4

______(минуты) _______________________________________

Приведенные данные свидетельствуют о том, что при работающих в настоящее время трех инспекторах среднее время ожидания обслуживания примерно равно 35 минут. По мнению посетителей, приемлемо было бы 15 минут ожидания. Как следует из этих же данных, среднее время ожидания становится меньше 15 минут, если число инспекторов больше или равно пяти.

Результаты исследования системы обслуживания также можно использовать для оптимизации модели со стоимостными характеристиками, в которой минимизируется сумма затрат, связанных с предоставлением услуг, и потерь, обусловленных задержками в их предоставлении. На рис. 2.6.1 изображена типичная стоимостная модель системы обслуживания, где затраты на обслуживание возрастают с ростом его уровня. В то же время потери, обусловленные задержками в предоставлении услуг, уменьшаются с возрастанием уровня обслуживания.


Уровень обслуживания

Главной проблемой, связанной с применением стоимостных моделей, является трудность оценки потерь в единицу времени, обусловленных задержками в предоставлении услуг.

Задачи массового обслуживания возникают в том случае, когда заявки на обслуживание (или требования ) не могут быть выполнены в силу занятости обслуживающего персонала (оборудования) или сама обслуживающая система оказывается бездействующей в силу отсутствия заявок. При моделировании данных задач используются фундаментальные понятия теории вероятности, т.к. случайными оказываются поток требований или длительность времени обслуживания, или и то и другое. При решении этих задач приходится определять либо оптимальное число обслуживающих каналов, либо оптимальную скорость потока (или находить моменты поступления заявок).

Класс моделей, пригодных для решения подобных задач, называют еще теорией очередей.

Эта теория представляет особый раздел теории случайных процессов и использует, в основном, аппарат теории вероятностей. Первые публикации в этой области относятся к 20-м гг. XX в. и принадлежат датчанину А. Эрлангу, занимавшемуся исследованиями функционирования телефонных станций – типичных СМО, где случайны моменты вызова, факт занятости абонента или всех каналов, продолжительность разговора. В дальнейшем теория очередей нашла развитие в работах К.Пальма, Ф.Поллачека, А.Я.Хинчина, Б.В.Гнеденко, А.Кофмана, Р.Крюона, Т. Cаати и других отечественных и зарубежных математиков.

При решении задач, связанных с очередями, возможны две ситуации:

а) число заказов слишком велико; имеет место большое время ожидания (недостаточный объем обслуживающего оборудования );

б) поступает недостаточное число заказов; имеет место простой оборудования (избыток оборудования ).

Необходимо найти оптимальное соотношение между потерями, вызванными простоем оборудования, и потерями из-за ожидания.

В качестве основных элементов СМО следует выделить входной поток заявок, очередь на обслуживание, cистему (механизм) обслуживания и выходящий поток заявок. В роли заявок (требований, вызовов) могут выступать покупатели в магазине, телефонные вызовы, поезда при подходе к железнодорожному узлу, вагоны под разгрузкой, автомашины на станции техобслуживания, самолеты в ожидании разрешения на взлет, штабель бревен при погрузке на автотранспорт. Роль обслуживающих приборов (каналов, линий) играют продавцы или кассиры в магазине, таможенники, пожарные машины, взлетно-посадочные полосы, экзаменаторы, ремонтные бригады.

По характеру случайного процесса, происходящего в СМО, различают системы марковские и немарковские.

Случайный процесс называется марковским , если для любого момента времени t вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t и не зависят от того, когда и как система пришла в это состояние. Рассмотренные ниже модели относятся к марковским системам.

В случае немарковских процессов задачи исследования СМО значительно усложняются и требуют применения статистического моделирования, численных методов с использованием ЭВМ.

Проблема очередей - одна из наиболее острых для многих организаций. Люди каждый день стоят в очередях у кассы в продуктовом магазине или у театральной кассы, сидят в ожидании приема у врача, в приемной комиссии вузов или в бюро занятости населения. Модель теории очередей позволяет, повысив эффективность работы организации, уменьшить очереди и подсчитать время ожидания в очереди и приблизительные убытки, которые несет организация из-за наличия очередей. Модель может быть полезна при решении самых разных проблем: менеджерам авиакомпаний (самолеты приземляются и обслуживаются в порядке очереди), работникам магазинов (очереди у кассы), директорам заводов (этапы прохождения сырья через различные производственные циклы), работникам медицинских учреждений (контроль оборачиваемости койко-мест).

Существует большое количество моделей теории очередей из-за необходимости описывать различные ситуации очередей. Очереди при «обслуживании одиночнъос требований», т.е. когда обслуживание происходит в одной точке, бывают, например, у стойки кассира в ресторане или у единственного операционного окна на почте. Очереди при «обслуживании многочисленных требований» наблюдаются, например, на той же почте при одновременном обслуживании несколькими операторами одной очереди.

Ситуации с очередями становятся более сложными при наличии большого количества очередей и большого количества служащих (как в супермаркете) либо когда люди или организационные единицы, нуждающиеся в обслуживании, должны пройти через несколько точек обслуживания (что типично, например, при получении водительских прав).

Выделяют четыре основных типа очередей, схемы которых приведены на рис. 6.15.

Очередь у врачебного кабинета представляет хороший пример одно- каналъной однофазовой очереди. Очередь только одна - существует только один канал обслуживания; врач только один - существует только одна зона обслуживания. Пациенты ожидают приема и допускаются к врачу в соответствии со временем, указанном в талончике.

Ожидание у кассы в продовольственном магазине - типичный пример многоканальной однофазовой очереди.

Примером одноканальной многофазовой очереди служит очередь на мойке автомобилей. Машины стоят в одной очереди, но проходят несколько фаз обслуживания: мойка, ополаскивание, сушка и полировка.

Рис. 6.15.

а - одноканальная; б - многоканальная однофазовая очередь; в - одноканальная многофазовая очередь; г - многоканальная многофазовая очередь

Примеры многофазовых многоканальных очередей в изобилии встречаются на производстве, где выпускается несколько видов продукции. Количество каналов, как правило, соответствует количеству выпускаемых наименований продукции, а количество фаз определяется количеством технологических операций от начала до конца производства.

В отличие от линейного программирования, модель теории очередей, или модель массового обслуживания, не обеспечивает оптимального решения. Более того, модели позволяют менеджерам разнообразить параметры ситуаций и определять возможные последствия.

Например, представьте себя менеджером банка, где есть четыре кассира, которые обслуживают клиентов, заключающих сделки. У каждого из четырех окон существует отдельная очередь. Клиенты всегда склонны выбирать самую короткую очередь. Однако часто случается так, что самая короткая очередь оказывается самой медленной, из-за того что с кем-то в ее начале проводят операцию, требующую длительного времени. Банк обеспокоен тем, что клиенты раздражаются, когда они задерживаются в длинной очереди; от коллег из других банков вы узнаете, что они установили системы, в которых все машины по обработке заявок ожидают в единой очереди, поэтому каждый следующий клиент из очереди направляется к первому освободившемуся окну.

При изучение ситуации оказывается, что клиенты прибывают в среднем со скоростью 16 человек в час, а каждый кассир справляется со сделками со средней скоростью 8 сделок за час.

В этом случае вы могли бы использовать модели теории очередей в качестве помощи, для того чтобы оценить разницу во времени ожидания в действующей системе и в альтернативной системе единой очереди для всех клиентов. Предположим, что анализ модели теории очередей показал, что клиентам приходится ждать обслуживания в среднем 7,5 минут в условиях существующей системы, но они бы ждали в среднем только 0,654 минуты в единой очереди для всех клиентов, и тогда вы, возможно, захотите изменить существующий порядок в целях достижения значительных улучшений в обслуживании. Таким образом, хотя модели теории очередей не подсказывают оптимального решения, они предоставляют данные, необходимые менеджерам для планирования наиболее эффективного обслуживания клиентов и покупателей. Модели теории очередей являются дорогими, если их разрабатывать для уникальных и сложных ситуаций. Однако существующее разнообразие моделей соответствует многим ситуациям, которыми могут заинтересоваться менеджеры. Возрастающее количество таких моделей в пакетах программного обеспечения делает их использование экономнее и проще. Приведем пример, позволяющий понять, каким образом производятся расчеты матрицы массового обслуживания.

Администратор универсама должен обеспечить работу необходимого количества кассиров. Это количество определяется двумя факторами:

  • убытками, которые несет универсам вследствие оплаты простоя кассиров из-за отсутствия покупателей;
  • убытками от потери клиентов из-за долгого ожидания в очередях.

Задача администратора сводится к тому, чтобы минимизировать

убытки как в первом, так и во втором случае. Иначе говоря, администратору нужно добиться самых коротких очередей при минимальном числе работающих кассиров. Он посчитал, что универсам не теряет ни одного клиента в течение первых четырех минут ожидания в очереди. Каждая дополнительная минута обходится универсаму в 10 долларов, так как покупатели устают ждать и покидают магазин. Затем он высчитал, сколько времени покупатели будут стоять в очереди при условии одновременной работы одного, двух, трех и четырех кассиров, а также стоимость работы кассиров. Результаты этих вычислений приведены в табл. 6.5. Подсчитав стоимость каждого варианта, администратор выбирает самый дешевый. Как видно из таблицы, работа одного кассира стоит дешевле, чем работа двух, но работа четырех кассиров обходится магазину дешевле всего.

Описанная ситуация относится к разряду самых простых, в которых может применяться модель массового обслуживания. Вычисления администратора были бы более сложными, если бы он принимал во внимание разницу в покупательских потоках (в часы пик и в спокойные часы) и разницу в оплате труда кассиров при найме на неполный рабочий день. Тем не менее, даже на таком простом примере можно понять полезность использования модели массового обслуживания.

Таблица 6.5

Расчет альтернативных издержек при моделировании массового обслуживания

Стохастическое моделирование

Ключевые слова: стохастичность, теория очередей, системы массового обслуживания, накопитель, очередь, транзакт

Стохастическое моделирование – это один из видов имитационного моделирования, базирующийся на теории Монте-Карло. Его определение можно представить так:

& Стохастическое моделирование (англ. stochastic modeling) – разновидность имитационного моделирования, в котором моделируемый объект представляется в виде совокупности параметров, описывающих внешнюю работу системы (внутренняя особенность объекта неизвестна) и имеющих случайную природу.

Если рассмотренные выше блочные и пошаговые модели со случайными процессами являются во многом детерминированными (их структура полностью или частично известна), то для процессов, имеющих менее определённый характер, требуется иной подход.

С внедрением автоматизации на предприятиях длительность изготовления продукции существенно сократилась за счёт ускорения выполнения роботами операций и внедрения конвейера. Производственный/обслуживающий процесс в основном стал сводиться к последовательности чётко разделённых технологических циклов, следующих друг за другом последовательно. Увеличился объём выпускаемой продукции, а следовательно, и нагрузки на обслуживающие элементы системы, что привело к возникновению задачи эффективной статистической оценки работы как системы в целом, так и её отдельных частей. Так появился подход, называемый теорией массового обслуживания или теорией очередей.

Стохастическое моделирование, или теория очередей – классическая область применения методов имитационного моделирования. Базовыми понятиями в этой области являются очередь , канал обслуживания и транзакт .

В зависимости от сочетания и настроек базовых элементов теории очередей можно описывать сложные технологические процессы, регистрируя только количественные и временные характеристики их работы.

Стохастическое моделирование можно охарактеризовать следующими признаками:

– использованием для моделирования дискретного времени;

– отсутствием информации о внутренней логике работы подсистем (всё задано случайными процессами во времени);

– наличием чёткой последовательности технологических операций в моделируемом процессе;

– рассмотрением однотипных объектов на каждом этапе процесса обслуживания;

– выделением законов движения транзакта путём наблюдения за моделируемой системой и обработки полученной статистики;

– просчётом, который позволяет визуализировать эволюцию модели на каждом шаге моделирования;

– представлением экспериментальных данных в виде таблицы-отчёта и графиков.



Условно в теории очередей рассматривается последовательность изменения состояния обслуживаемой заявки (транзакта) между этапами «поступление», «ожидание в очереди», «обслуживание», «покидание системы». При этом процесс внутренней работы подсистем (обслуживание) не детализируется, как в других моделях, а лишь характеризуется обобщенными временными характеристиками (высокая стохастичность). По этой причине подобные модели получили ещё одно название – системы массового обслуживания .

& Система массового обслуживания (англ. queue(ing) system, СМО ) – система, описывающая движение транзактов в исследуемом сложном объекте, характеризуемом траекторией обслуживания транзактов в виде временных интервалов.

Целью исследования в модели будут этапы обслуживания – наиболее трудно формализуемые элементы в системе.

Каждый этап обслуживания в модели имеет индивидуальную характеристику длительности и обозначается термином «накопитель». Для каждого накопителя в системе можно посчитать пропускную способность (число обслуженных заявок), коэффициент загрузки, среднюю скорость обслуживания одной заявки.

Наряду с накопителями, центральными понятиями в теории очередей являются транзакт и очередь. Рассмотрим их подробней.

& Транзакт (англ. transact) – элементарный элемент обслуживания в модели (заявка), траектория обработки которого описывается на всём этапе его присутствия в системе в соответствии с особенностями технологического процесса.

Транзакт может моделировать человека в очереди, процесс в памяти ЭВМ, товар на прилавке и тому подобное. Каждый транзакт имеет уникальный порядковый номер и обладает рядом характеристик, которые делятся на следующие группы:

1) человеческие (например, клиенты торговой точки);

2) финансовые (например, заявка на денежный перевод в отделение банка);

3) информационные (например, вызов на междугороднюю АТС);

4) прочие (например, техническое устройство, требующее ремонта или обслуживания).

По времени жизни:

1) с фиксированным временем жизни (например, скоропортящийся продукт питания после попадания в торговую точку может находиться там только ограниченное количество времени);

2) с бесконечным временем жизни (например, заявка в отдел заказов книжного магазина на доставку литературы).

По способу обслуживания:

1) с привилегиями, или приоритетами (например, обслуживание в кассе ветеранов Великой Отечественной войны без очереди);

2) без приоритетов (например, очередь в кассу кинотеатра).

Транзакты являются теми элементарными единицами обслуживания в системе, с помощью которых можно производить исследования моделируемых процессов. Последовательная совокупность транзактов, поступающая к месту обслуживания (накопителю), образует поток.

Непосредственно перед входом на этап обслуживания перед накопителем выстраивается очередь, образованная потоком транзактов. Она является важной характеристикой при оценивании работоспособности исследуемой системы, поэтому выделяют следующие виды очередей:

По положению:

1) внешняя (например, ожидание принтером ремонта в сервисном центре);

2) внутренняя (например, ожидание очередного этапа обработки изделия в середине технологического цикла (очередь внутри системы).

По длине:

1) с отказами (например, если на автостоянке нет свободных мест для парковки, то автомобиль уезжает, не дожидаясь освобождения места);

2) фиксированной длины (например, очередь запросов на соединение абонентов на АТС).

3) произвольной длины (например, очередь в супермаркете).

По интенсивности поступления новых запросов:

1) стационарные (регулярное поступление транзактов) (например, скорость движения конвейера задаёт интенсивность поступление товара в очередь для транспортировки на склад);

2) нестационарные (случайная интенсивность поступления транзактов) (например, поступление клиентов к пункту обслуживания столовой).

По направлению обслуживания транзактов:

1) правило FIFO: First Input – First Output, то есть ′первым пришел – первым вышел′ (например, очередь к парикмахерскую);

2) правило FILO: First Input – Last Output, то есть ′первым пришел – последним вышел′ (например, последовательность вынимания из постоянно пополняющегося контейнера деталей для последующей обработки: внизу находятся те детали, которые прибыли в контейнер первыми, поэтому они будут обработаны в последнюю очередь).

3) случайно (например, последовательность регистрации книг, поступивших в одной партии для книжного магазина).

Таким образом, для каждой очереди можно посчитать её среднюю длину; интенсивность поступления и выбытия из очереди; процент заявок, вышедших из системы по истечению срока ожидания; вероятность того, что система будет свободна; вероятность нахождения определённого числа клиентов в системе.

К перечисленным характеристикам добавляется параметр различного приоритета транзактов, что усложняет поведение заявок в системе. Многие процессы, сводимые к теории массового обслуживания, достаточно сложно оценить аналитически. Поэтому имитирование работы подобных систем – рациональный подход для определения характеристик исследуемой предметной области.

Этот метод, предложенный Данцигом, Кестеном и Ранненбергом (метод коллективных меток - method of collective marks) и развитый затем Г.П. Климовым (метод «катастроф»), позволяет легко получить аналитические результаты в ситуациях, когда другие известные методы приводят к трудоемким выкладкам. Особенно эффективен он оказался при анализе ненадежных и приоритетных систем массового обслуживания.

Сущность этого метода заключается в следующем. Пусть требуется найти некоторое распределение, характеризующее функционирование СМО. Производящей функции этого распределения (если распределение дискретное) или его преобразованию Лапласа - Стилтьеса придается вероятностный смысл за счет «раскрашивания» запросов или введения в рассмотрение потока «катастроф». Затем вводится в рассмотрение некоторое (дополнительное) случайное событие и вероятность его подсчитывается в терминах производящей функции или преобразованию Лапласа - Стилтьеса искомого распределения двумя различными способами. В результате получается уравнение, решением которого является функция, которая интересует исследователя.

Проиллюстрируем этот метод, применив его для нахождения вероятностных характеристик системы M\G\1. Важной характеристикой производительности многих реальных систем является распределение периода занятости системы. Период занятости есть интервал времени с момента поступления запроса в пустую систему до момента, когда система впервые вновь окажется пустой. Знание периода занятости позволяет решать задачи, связанные, например, с планированием проведения в системе профилактических работ, исследованием возможности дополнительной загрузки прибора выполнением некоторой второстепенной «фоновой» работы и т.д.

Обозначим функцию стационарного распределения длины периода занятости в рассматриваемой системе, -ее преобразование Лапласа - Стилтьеса.

Считаем, что выполняется условие:

гарантирующее существование стационарного распределения длины периода занятости рассматриваемой СМО.

Утверждение 13.

Преобразование Лапласа - Стилтьеса распределения длины периода занятости рассматриваемой СМО удовлетворяет следующему функциональному уравнению:

Доказательство. Легко видеть, что распределение длины периода занятости системы не зависит от того, в каком порядке обслуживаются запросы. Для облегчения анализа структуры периода занятости предположим, что запросы обслуживаются в инверсионном порядке, то есть на обслуживание всегда выбирается запрос, пришедший в систему последним. Такая дисциплина выбора из очереди кодируется как LIFO (Last In - First Out) или LCFS (Last Came - First Served). При такой дисциплине выбора из очереди каждый запрос как бы порождает период занятости системы запросами, пришедшими в систему после него. Причем структура и, следовательно, распределение длины периода занятости, порожденного некоторым запросом, такие же, как структура и распределение длины периода занятости системы. Используя эти рассуждения, мы приходим к пониманию того, что период занятости системы состоит из времени обслуживания первого запроса, с которого начался период занятости, и случайного числа периодов занятости, порожденных запросами, пришедшими в систему за время обслуживания первого запроса.

Теперь предположим, что независимо от функционирования данной системы поступает простейший поток катастроф интенсивности s. Введем в рассмотрение (дополнительное) событие А, состоящее в том, что за данный период занятости не поступили катастрофы.

Напомним, что согласно вероятностной трактовке преобразования Лапласа - Стилтьеса, величина есть вероятность того, что не произойдет ни одной катастрофы за случайное время, имеющее функцию распределения H(t). Поэтому легко понять, что вероятность события А определяется следующим образом:

Найдем теперь вероятность этого же события иначе. Назовем произвольный запрос «плохим», если за период занятости, порожденный им, наступает катастрофа. Используя достигнутое нами понимание структуры периода занятости, нетрудно убедиться, что для того, чтобы запрос, с которого начался период занятости, был неплохим (вероятность этого есть Р(А)), необходимо и достаточно, чтобы за время его обслуживания не поступили события из суммарного потока катастроф и потока плохих запросов.

Поток катастроф является простейшим потока интенсивности s. Поток плохих запросов получается из исходного простейшего потока интенсивности в результате применения простейшей процедуры рекуррентного просеивания (произвольный запрос включается в просеянный поток с вероятностью независимо от других запросов). Поэтому, согласно Утверждению 6, просеянный поток является простейшим потоком интенсивности Согласно Утверждению 5, суммарный поток катастроф и плохих запросов является простейшим потоком интенсивности

Таким образом, используя еще раз вероятностную трактовку преобразования Лапласа - Стилтьеса мы получаем следующую формулу для вероятности события :

Сравнивая выражения (1.83) и (1.84), мы убеждаемся в справедливости формулы (1.82). Утверждение 13 доказано.

Уравнение (1.82), полученное Дж. Кендаллом в 1951 году, имеет единственное решение в области Res > 0, такое, что

В случае, если распределение времени обслуживания показательное, рассматриваемая система есть М|М|1 и преобразование Лапласа - Стилтьеса распределения времени обслуживания имеет вид: При этом функциональное уравнение (1.82) переходит в квадратное уравнение для неизвестного преобразования Лапласа - Стилтьеса

Решая уравнение (1.85), получаем:

В этой формуле выбираем только знак чтобы полученное решение удовлетворяло условию Обращая теперь преобразование Лапласа - Стилтьеса получаем следующее выражение для производной функции распределения длины периода занятости системы М|М|1:

где функция есть модифицированная функция Бесселя первого рода.

В общем случае уравнение (1.82) можно решать методом итераций, снабдив функцию индексом в левой части уравнения и индексом в правой части. Эта процедура имеет геометрическую скорость сходимости последовательности к значению при фиксированном значении аргумента

Кроме того, путем последовательного дифференцирования уравнения (1.82) с последующей подстановкой аргумента и учета свойства 5 преобразования Лапласа - Стилтьеса, можно получить рекуррентную последовательность формул для вычисления начальных моментов распределения длины периода занятости. Так, среднее значение длины периода занятости и второй начальный момент ее распределения определяются формулой:

Как и следовало ожидать, с ростом коэффициента загрузки и приближением его значения к единице среднее значение периода занятости стремится к бесконечности.

Рассмотрим теперь другую характеристику функционирования системы M\G\1 - число запросов, обслуженных за период занятости. Обозначим

Утверждение 14. Производящая функция удовлетворяет следующему функциональному уравнению:

Доказательство. Производящей функции придадим вероятностный смысл следующим образом. Каждый из запросов независимо от других назовем красным с вероятностью z и синим с дополнительной вероятностью. Произвольный запрос назовем темнокрасным, если он сам красный и за период занятости, порожденный им, в системе обслуживались только красные запросы. Введем событие А, состоящее в том, что запрос, с которого начинается период занятости, является темно-красным. Найдем вероятность этого события. С одной стороны, очевидно, что

С другой стороны, из проделанного выше анализа структуры периода занятости ясно, что для того, чтобы запрос был темно-красным, необходимо и достаточно, чтобы он сам был красным (вероятность этого равна z) и за время его обслуживания могли поступать только темно-красные запросы.

Так как поток запросов - простейший с параметром , а произвольный запрос является темно-красным с вероятностью , то поток нетемно-красных вызовов (как это следует из Утверждения 6) является простейшим с параметром Вспоминая вероятностную интерпретацию преобразования Лапласа - Стилтьеса, из приведенных рассуждений выводим следующую альтернативную формулу для вероятности события

Сравнивая формулы (1.90) и (1.91), убеждаемся в справедливости (1.89). Утверждение 14 доказано.

Уравнение (1.89) определяет единственную аналитическую в области функцию, такую, что

Следствие. Среднее число запросов, обслуженных в системе M\G\1 за один период занятости, задается формулой:

Приведем еще одно доказательство формулы Поллячека-Хинчина для производящей функции распределения вероятностей числа запросов в системе M\G\1 в моменты окончания обслуживания. Каждый из запросов, приходящих в систему, независимо от других назовем красным с вероятностью 2 и синим с дополнительной вероятностью. Введем событие А, состоящее в том что запрос, уходящий в данный момент окончания обслуживания из системы, сам красный и все запросы, остающиеся в системе в этот момент, тоже красные.

Из вероятностной интерпретации производящей функции очевидно следует, что:

где есть искомая производящая функция распределения вероятностей числа запросов в системе в моменты окончания обслуживания.

С другой стороны, для того, чтобы произошло событие А, необходимо и достаточно, чтобы все запросы, которые находились в системе в предыдущий момент окончания обслуживания (если система была непуста), были красными и за время обслуживания не пришли синие запросы, а если система была пуста, то первый пришедший запрос должен быть красным и за время его обслуживания не пришли синие запросы.

Из этих рассуждений следует, что:

Из соотношений этого соотношения и (1.92) очевидным образом следует формула Поллячека - Хинчина:

полученная нами ранее с помощью метода вложенных цепей Маркова.

В заключение подраздела найдем характеристики системы M\G\1 с дисциплиной LIFO.

Выше отмечалось, что распределение периода занятости системы M|G|1 не зависит от дисциплины обслуживания. Поэтому уравнение (1.82) определяет преобразование Лапласа - Стилтьеса распределения периода занятости для всех дисциплин. Кроме того, несложно видеть, что и распределения числа запросов в системе M\G\1 при дисциплинах FIFO и LIFO совпадают и задаются формулой (1.81).

Распределение времени ожидания запроса при дисциплинах FIFO и LIFO различно. При дисциплине FIFO преобразование Лапласа - Стилтьеса стационарного распределения времени ожидания задается формулой (1.52).

Утверждение 15. При дисциплине LIFO преобразование Лапласа - Стилтьеса имеет следующий вид:

где функция является решением уравнения (1.82).

Доказательство. Введем поток катастроф и понятие «плохого» запроса, как это было сделано при доказательстве Утверждения 13. При этом функция есть вероятность того, что за время ожидания данного запроса не наступит катастрофа, а функция есть вероятность того, что произвольный запрос не является «плохим», то есть катастрофа не наступает за период занятости, порожденный этим запросом.

Учитывая сущность дисциплины LIFO и рассуждения, использованные при доказательстве Утверждения 13, получаем формулу:

где есть преобразование Лапласа - Стилтьеса распределения остаточного (после момента поступления запроса, время ожидания которого мы исследуем) времени обслуживания запроса, находящегося на приборе.

← Вернуться

×
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:
Я уже подписан на сообщество «i-topmodel.ru»