Что такое статическая и динамическая балансировка. Статическая и динамическая балансировка роторов механизмов

Подписаться
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:

Ротор в целом может иметь неравномерное относительно оси вращения распределение металла по весу и его центр тяжести не будет расположен на этой оси, т.е. по весу ротор будет неуравновешен относительно оси вращения. Такая неуравновешенность ротора или его деталей называется небалансом .

При вращении ротора небаланс вызывает появление радиально направ­ленной возмущающей силы. Эта сила стремится вырвать вал вместе с укреп­ленной на нем деталью из подшипников. Возмущающая сила все время меняет свое направление, оставаясь радиальной, поэтому ее действие на подшипники переменно по направлению; такое действие неизбежно приводит к вибрации механизма.

Детали механизма при вибрации испытывают удары, толчки и перегруз­ку, что вызывает ускоренный общий износ, нарушение центрирования и креп­лений, а это в свою очередь еще более усиливает вибрацию.

Чтобы устранить возмущающую силу, ротор уравновешивают, т.е. устра­няют его небаланс. Операции по устранению небаланса называют балансиров­кой. Балансировать можно каждую деталь ротора в отдельности или весь ротор в целом; последний способ экономичнее и точнее.

Чтобы сбалансировать неуравновешенность ротора, нужно на том же рас­стоянии от оси (там где выявлен небаланс), но в диаметрально противополож­ном направлении наплавить (подвесить) груз необходимой для балансировки массы; после чего ротор окажется сбалансированным и никакой возмущаю­щей силы при его вращении возникать не будет.

Величину и расположение небаланса находят при выполнении различных видов балансировок.

Различают статическую и динамическую балансировки ротора:

1. Статической балансировка называется потому, что для выявления и устранения небаланса не требуется вращения ротора; уравновеши­вания достигают, когда ротор находится в состоянии покоя.

2. Динамическая неуравновешенность наблюдается тогда, когда не­уравновешенные массы ротора дают две возмущающие силы, оди­наковые по величине, но противоположно направленные и распо­ложенные на разных концах. При этом может оказаться, что общий центр тяжести ротора расположен на оси вращения, т.е. статически ротор уравновешен. Такую неуравновешенность можно выявить только при вращении ротора, так как общий центр тяжести ротора расположен на его оси, и только при вращении обе неуравновешен­ные массы образуют пару возмущающих сил переменного направ­ления. Следовательно, статически отбалансированный ротор в не­которых случаях может иметь динамическую неуравновешенность. Операция по выявлению и устранению динамического небаланса называется динамической балансировкой .



Монтаж дымососов

Дымососы (Д) предназначены для отсасывания дымовых газов из топки котла и выброса их под напором через дымовую трубу в атмосферу.

Дымососы бывают центробежного (1) и осевого (2) типа.

1. Для котлов паропроизводительностью 420-640 т/ч применяются дымо­сосы центробежного типа двухстороннего всасывания типа: Д-25х2Ш и Д 21,5x2.

Эти дымососы состоят из следующих основных узлов:

Подшипников

Направляющих аппаратов и их привода

Монтаж дымососа начинают с приемки фундамента и установки на него электродвигателя.

Значительные размеры Д двухстороннего всасывания предопределяют их поставку на монтаж в разобранном виде. Поэтому первоначальной операцией по монтажу является сборка на сборочной площадке опорных конструкций Д (рам) и корпусов улиток с всасывающими карманами.

Монтаж Д начинается с установки опорной рамы, которая крепится к фундаменту при помощи болтов. Рама устанавливается на металлических под­кладках, общая толщина которых может быть до 25-30 мм, при количестве подкладок в одном пакете не более трех.

Подкладки располагаются по обе стороны каждого фундаментного болта и регулируют высотные отметки, отклонение которых от проектных допускает­ся не более + - 6 мм.

На опорную раму устанавливаются подшипники Д, центровка которых производится по струне и отвесам.

После установки корпусов подшипников на фундамент устанавливается корпус Д, затем укладывается его ротор.

Вслед за установкой корпуса Д на его всасывающей стороне монтируют регулирующие шиберы. Предварительно шиберы проходят ревизию, в процессе которой проверяется плавность их открытия и закрытия.

Собранный Д опробуется на холостом ходу; при этом допускаются ради­альное и осевое биения рабочего колеса соответственно не более 3 и 6 мм.

2. В котельных установках паропроизводительностью 950 т/ч и более применяются осевые Д типа ДО - 31,5. Основными преимуществами этих Д (по сравнению с центробежными Д) является их компактность. Двухступенчатый осевой Д состоит из:

Всасывающего кармана

Корпуса

Направляющих аппаратов

Рабочих колес

Диффузора

Ходовой части

Маслонасосной станции с системой маслопроводов

Вентиляции для охлаждения

Всасывающий карман изготавливается их двух половин (верхней и ниж­ней), соединяемых на фланцах. Общая масса всасывающего кармана составля­ет около 7,5 т. Нижняя часть всасывающего кармана устанавливается на двух фундаментных опорах.

Корпус Д выполнен из трех частей, предназначенных для размещения:

i. направляющего аппарата и рабочего колеса I ступени;

ii. направляющего аппарата и рабочего колеса II ступени;

iii. спрямляющего аппарата.

Все части соединяются друг с другом на фланцах болтами.

Ходовая часть состоит из вала, двух подшипников и муфты, соединяю­щей вал Д с электродвигателем.

Подшипники Д - роликового типа, сферические, самоустанавливающие­ся, работающие на жидкой смазке, которая подается маслостанцией через сис­тему масляной смазки)(На два Д устанавливается одна маслостанция. Тепловая защита опорного подшипника, установленного в корпусе диффузора, осущест­вляется при помощи специального вентилятора и теплозвукоизоляционного по­крытия.

Монтаж Д начинают с установки опорных конструкций и приемки фун­дамента. Бетонная поверхность предварительно зачищается от неровностей и насекается в местах расположения фундаментных болтов и подкладок под опорные конструкции Д. Подкладки изготовляются из листовой стали шири­ной 100-200 мм и длиной, соответствующей ширине нижней плоскости опор­ной конструкции. Число подкладок не должно превышать трех в одном месте.

Технологическая последовательность монтажа ____ осевого дымососа ДО - 31,5

Оче­ред­ность Узел Основные работы
I Нижняя часть корпуса Установка на опорные конструкции. Уста­новка шпонок продольного упора. Выверка тепловых зазоров в узлах крепления опор.
Опорно-упорный подшипник Установка и закрепление на фундаментных опорных конструкциях опорно-упорного подшипника и ротора с соблюдением осе­вых зазоров.
Электродвигатель Установка на валы полумуфты. Установка рамы и электродвигателя.
Узлы 1,2,3 Выверка главных осей и высотных отметок нижней части корпуса, ходовой части и электродвигателя.
Ходовая часть Прицентровка нижней части корпуса к ро­тору с соблюдением радиальных зазоров.
Опоры корпуса дымососа Заливка бетоном фундаментных болтов подставок корпуса.
Помосты и лестницы Установка на фундамент привода направ­ляющих аппаратов. Установка помостов и лестниц вокруг электродвигателя и корпуса дымососа.
Снятие ротора дымососа. Установка под-
ставок на фундамент. Смазка опорных по­верхностей подставок смесью солидола с графитом. Установка нижней части всасы­вающего кармана.
Нижняя часть обтекателя (кока) Установка нижней части обтекателя и нижней крышки защитного кожуха опорно­го подшипника. Установка ротора.
Верхняя часть корпуса Установка верхней части корпуса дымососа на асбестовых прокладках в горизонталь­ном разъеме. Установка верхней части об­текателя.
Нижняя часть всасывающего кармана Окончательная установка и крепление к корпусу нижней части всасывающего кар­мана.
Защитные устройства Монтаж защитного кожуха опорного под­шипника и сальникового уплотнения.
Направляющие аппараты Монтаж поворотных колец, рычагов, тяг и привода направляющих аппаратов.
Диффузор Установка трубы диффузора на временной опоре. Последовательный монтаж трех сек­ций диффузора. Установка распорных ре­бер между трубой и конусом диффузора.
Вентилятор охлаждения Монтаж вентилятора охлаждения и возду­хопровода.
Верхняя часть всасывающего кармана Монтаж верхней части всасывающего кар­мана, установка ограждения вала
Валы дымососа и электродвигателя Прицентровка и соединение валов дымосо­са и электродвигателя.

Статической балансировкой называют совмещение центра тяжести детали с её геометрической осью вращения. Это достигают снятием металла с тяжёлой части детали, или добавлением его путём наплавки на её лёгкую часть.
Статической балансировке подвергают маховики, крылатки насосов, зубчатые колёса и шестерни зубчатых передач дизельных установок и т.д.
Вращение деталей с неуравновешенной массой приводит к появлению центробежной силы или пары сил, которые и вызывают вибрацию механизма при его работе. Центробежная сила возникает при условии, что центр тяжести детали не совпадает с её осью вращения.
Схема действия центробежной силы при смещении центра тяжести:

Неуравновешенная центробежная сила создаёт на подшипниках дополнительные нагрузки, величина которых может быть определена по формулам:


где Р1,Р2 — дополнительные нагрузки на подшипниках;
а, в — расстояние от плоскости действия силы С соответственно до левого и правого подшипников, мм;
l — расстояние между осями подшипников, мм.
Величину центробежной силы можно определить через массу детали и величину смещения центра тяжести детали относительно оси её вращения по формуле:


где G — масса детали, кг;
q — ускорение силы тяжести (9,81 м/с2);
w — угловая скорость (w = п на n / 30, где n — частота вращения, мин - 1);
r — расстояние от центра тяжести до оси вращения детали, м.
Например, центр тяжести «0» вращающегося диска массой 30 кг с частотой вращения 3000 мин - 1 смещён от центра оси на величину r = 1 мм. Тогда неуравновешенную центробежную силу получаем:

то есть нагрузка на ось в 10 раз превышает массу самой детали. Из этого следует, что даже незначительное смещение центра тяжести может вызвать большие дополнительные нагрузки на подшипники.
Статическую балансировку производят на специальных стендах. Основными деталями стенда являются ножи (призмы), валики или подшипники качения, на которых устанавливают балансируемую деталь на оправке. Ножи, валики или подшипники размещают в одной горизонтальной плоскости.
Статическую балансировку деталей, работающих при частоте вращения до 1000 мин - 1, производят в один этап, а деталей, работающих при большей частоте вращения, — в два этапа.
На первом этапе деталь уравновешивают до безразличного её состояния, то есть такого состояния, при котором деталь останавливается в любом положении. Это достигают путём определения положения тяжелой точки, а затем с противоположной стороны подбирают и крепят уравновешивающий груз. В качестве уравновешивающего груза используют кусок пластилина, замазки, мастики и т.д.
После уравновешивания детали на её лёгкой стороне взамен временного груза крепят постоянный груз, или с тяжёлой стороны снимают соответствующее количество металла, схема установки временного и постоянного грузов представлена на рисунке:
Схема установки временного (Р1) и постоянного (Р2) грузов:


Б — тяжёлая точка.
Иногда место установки уравновешивающего временного груза меняют, что сопровождается изменением радиуса его установки и, как следствие, изменением его массы. Величину массы постоянного уравновешивающего груза определяют из уравновешивания моментов:


где Р1 — масса временного груза;
Р2 — масса постоянного груза;
R, r — радиусы установки соответственно временного и постоянного грузов.
Для деталей с частотой вращения до 1000 мин - 1 балансировку на этом заканчивают.
Второй этап балансировки заключается в устранении остаточной неуравновешенности (дисбаланса), оставшейся за счёт инерции детали и наличия трения между оправкой и опорами. Для этого поверхность торца детали делят на шесть-восемь равных частей, нумеруя их.
Диаграмма статической балансировки детали:


а — разметка окружности торца детали и места установки грузов; б — развёртка окружности и кривая балансировки.
Затем деталь с временным грузом устанавливают так, чтобы точка 1 оказалась в горизонтальной плоскости. В этой точке крепят груз, увеличивая его массу до тех пор, пока деталь не выйдет из состояния равновесия (покоя) и не начнёт медленно вращаться. Груз снимают и взвешивают на весах.
В такой же последовательности выполняют работу и для остальных точек детали. Полученные значения массы грузов заносят в таблицу:
Значения массы грузов в точках их установки на детали (r ):


По данным таблицы строят кривую, которая при точном выполнении балансировки должна иметь форму синусоиды. На этой кривой находят точки максимума (А макс) и минимума (А мин).
Точке максимума кривой соответствует легкое место детали, а точке минимума — тяжёлое место детали.
Массу уравновешивающего груза (дисбаланса) определяют по формуле:


Статическая балансировка считается удовлетворительной, если:


где К — масса дисбаланса детали, г;
R — радиус установки временного груза, мм;
G — масса балансируемой детали, кг;
l ст — предельно допустимое смещение центра тяжести детали от оси её вращения, мкм.
Предельно допустимое смещение центра тяжести детали находят по диаграмме предельно допустимых смещений центра тяжести у деталей при статической балансировке.
Диаграмма предельно допустимых смещений центра тяжести деталей при статической балансировке:


1 — для колёс зубчатых редукторов, дисков гидромуфт, гребных винтов с турбоприводом; 2 — гребные винты дизельных установок, маховики, крылатки центробежных насосов и вентиляторов.
Если соблюдается условие уравнения, то процесс балансировки на этом заканчивается и груз дисбаланса на деталь не устанавливают. Если условие уравнения не соблюдается, то полученную массу грузика «К» устанавливают в точке А макс (радиус 2) или снимают в точке А мин (радиус 6).
Качество балансировки деталей проверяют при работе дизеля по его вибрации.

Как производится балансировка колёс (статическая, динамическая)

Шина представляет собой сложное технологическое изделие, состоящее из большого числа разнородных элементов из разных составов резиновой смеси, а также стали, текстиля, синтетических материалов. Поэтому создать равномерное распределение материалов, а следовательно и массы задача сложная и это неизбежно приводит к появлению «тяжелых» мест шины в протекторной части, а также в боковине.

Кроме того, колесо в сборе может быть установлено с нарушением центровки относительно ступицы автомобиля, диск имеет отверстие под вентиль и сам вентиль имеет некоторую массу.

При вращении колеса на элемент массы участвующий в круговом движении действует центробежная сила, величина которой зависит от массы участка, расстояния от оси вращения, а также от линейной скорости вращения. Причем зависимость от скорости квадратичная. Именно эта сила и будет при вращении колеса создавать переменную по направлению результирующую силу, а также переменный по направлению вращающий момент на оси, что ведет к возникновению вибраций колеса, вибраций элементов рулевого управления и подвески. Это воздействие равносильно применению на автомобиле деформированного колеса. В результате, снижается безопасность движения, а также существенно ухудшает комфортность и в конечном счете приводит к разрушению элементов подвески и преждевременному износу шины.

Как же бороться с этим явлением? Ответ прост - необходимо компенсировать неоднородность массы, используя так называемые балансировочные грузики.

Различают статический и динамический дисбаланс.

Статический дисбаланс -- это неравномерное распределение масс по оси вращения. При статическом дисбалансе колесо бьет в вертикальной плоскости. Для устранения этого явления к колесу необходимо приложить компенсирующую силу равную по величине, но противоположную по направлению центробежной силе. Это достигается прикреплением дополнительного грузика в диаметрально противоположной точке нахождения неуравновешенной массы. Такой процесс называется статической балансировкой . Без проведения статической балансировки невозможна и другая процедура: сход-развал -- установка правильного угла наклона колеса, от которого зависит управляемость автомобиля.

Динамический дисбаланс -- это неравномерное распределение масс в плоскостях параллельных направлению движения. При динамическом дисбалансе на колесо действует пара сил противоположно направленных, создающих переменный момент - «расскачивая» колесо из стороны в сторону. Такая балансировка предотвращает раскачивание колеса из стороны в сторону -- основного явления при возникновении динамического дисбаланса. Процедура исправления дефектов производится при быстро вращающемся колесе. Она позволяет более точно установить и устранить все дефекты. После этого выполняют развал схождение.Динамическая балансировка проводится на специальных балансировочных стендах.

В основном при балансировке колеса имеет случай комбинированного дисбаланса , сочетающий статическую и динамическую составляющую.

Сейчас, скорости перемещения возросли, для высокоскоростных автомобилей необходима весьма точная балансировка, сделать которую возможно только на оборудовании высокого класса и квалифицированным персоналом. Кроме того, дополнительную коррекцию неравномерности масс элементов подвески, участвующих во вращении и неточности центровки колеса на ступице возможно осуществить на автомобиле при проведении финишной балансировки.

Балансировочный станок APOLLO

Функциональные особенности:

Высокая производительность и точность балансировки колес за счет применения прогрессивных технологий:

AutoALU, S-Drive, Direct3D

Автоматическое определение параметров диска

Автоматическое определение типа диска (технология AutoALU)

Точное прямое измерение геометрии ALU-дисков (технология Direct3D)

Интеллектуальное управление 3-фазным двигателем - поворот к месту установки груза (технология S-Drive)

Точная установка липких грузов электронной линейкой

SPLIT - установка липких грузов за спицами

Минимизация статического дисбаланса

Настройка предела 0

Счётчик отбалансированных колёс

Синтезатор речи

Защита от повышенного напряжения в сети (технология PowerGuard)

Высокоточный шпиндельный узел, диаметр вала 40 мм.

В случае отсутствия специальных стендов статическую балансировку колеса можно выполнять на ступице переднего колеса автомобиля. Для этого надо приподнять переднюю часть автомобиля домкратом, ослабить затяжку подшипников ступицы переднего колеса, расшплинтовав и отвернув на 90...120° регулировочную гайку. После этого следует устанавливать колесо в различные положения и отпускать. Если при этом колесо не удерживается в установленном положении, а проворачивается в ту или другую сторону и останавливается только в одном положении, значит оно имеет дисбаланс.


Рис. 123.

а -- крепление балансировочного грузика на ободе колеса, б --определение самой легкой части колеса, в -- начальное положение балансировочных грузиков, г -- окончательное положение балансировочных грузиков (при равновесии колеса)

Для балансировки колес необходимо:

снизить давление в шине до 20...30 кПа и снять с обода колеса балансировочные грузики (рис. 123, а);

медленно повернуть колесо против часовой стрелки и отпустить, когда оно остановится; нанести вертикальной меловой чертой метку I (рис. 123,б), определяющую верхнюю точку колеса;

повернуть толчком колесо по часовой стрелке и после его остановки также отметить верхнюю точку меловой вертикальной линией II, разделить кратчайшее расстояние между метками I и III пополам и нанести метку III-- это и будет самое легкое место колеса (рис. 123, б);

установить по обе стороны метки III малые балансировочные грузики (рис. 123, в) массой 30 г, которые своей пружиной подходят под борт покрышки и удерживаются на ободе;

толчком руки повернуть колесо. Если после его остановки грузики займут нижнее положение, их масса для балансировки колеса достаточна; если грузики займут верхнее положение, нужно поставить более тяжелые (40 г) и, вращая колесо, убедиться, что оно останавливается при нижнем положении грузиков;

отодвигая грузики на равные расстояния (А и А) от метки III (рис. 123, г), следует добиться равновесия колеса, когда оно после толчка рукой будет останавливаться в разных положениях (в зависимости от приложенного усилия);

накачать шину до нормального давления и приступить к балансировке следующего колеса. Передние колеса балансируются каждое на своей ступице, а задние -- на одной из ступиц передних колес.

Балансировка колес необходима для того, чтобы во время движения автомобиля, водитель не испытывал дискомфорта, от такого явления как биение колес. Происходит это тогда, когда имеется дисбаланс относительно оси или плоскости вращения.

Зачем нужна балансировка колес

В процессе производства дисков, камер и покрышек, невозможно сделать идеально сбалансированный продукт. Основную часть дисбаланса привносит покрышка. Поскольку она наиболее удалена от центра вращения. Отсюда возникает необходимость балансировки. Ведь неправильная балансировка колес не только делает езду на автомобиле некомфортной, она так же способствует быстрому износу элементов подвески. В первую очередь страдает ступичный подшипник, который непременно придется менять в том случае, если вы ездили на несбалансированных колесах.

Согласитесь, куда дешевле сделать балансировку, нежели менять изношенные детали и покрышки. До сих пор встречаются люди, которые балансируют только передние колеса. Якобы в этом нуждаются только ведущие, и нет нужды тратить дополнительные деньги на балансировку задних. Это заблуждение, и такая экономия лишь убьет элементы задней подвески.

Существует несколько видов балансировки:

  • на станке, со снятием колеса;
  • финишная, производится непосредственно на автомобиле;
  • автоматическая (порошковая, бисерная).

Так же существует разделение на динамическую и статическую.

Как делается балансировка

Статическая

В случае, когда колесо имеет статический дисбаланс, его вес по оси вращения неравномерный, оно имеет тяжелое место. Это место с большей силой будет бить по дороге, и чем больше будет скорость его вращения, тем сильней будет статический дисбаланс.


Во избежание данного явления и делается статическая балансировка. Данную услугу в нашей стране предоставляют все шиномонтажные мастерские. Колесо помещается на специальный станок, в процессе вращения автоматика определяет степень дисбаланса, и указывает на какое место необходимо установить дополнительный груз.

Грузы бывают двух типов:

  • с кронштейном, крепятся на край диска и применяются, как правило, на штампованных дисках;
  • на клеевой основе, удобны для балансировки литых, кованых дисков.

Динамическая

Стоит сразу отметить, что данную услугу может предложить далеко не каждая станция шиномонтажа. Так как оборудование, используемое в большинстве случаев — старое, можно сказать трофейное.

Так для чего нужна динамическая балансировка? Чем шире профиль колеса, тем больше шансов получить динамический дисбаланс при движении, относительно плоскости его вращения.

Финишная

Данный вид балансировки производится уже после основной статической, и по возможности динамической. Под подвешенный автомобиль устанавливается специальное оборудование, балансировочный стенд, колесо раскручивается до скорости 90 км/ч, а автоматика делает замеры, и указывает в каком месте и какой груз необходимо установить. Для данной балансировки нужно оборудование, которым располагают зачастую лишь профессиональные центры шиномонтажа.

Автоматическая

Автоматическая применяется только на грузовых автомобилях и автобусах. Происходит это следующим образом — в колесо засыпается специальные балансировочные гранулы, мелкий бисер, реже песок, ведь у последнего высокий абразивный эффект. Во время движения, под воздействием центробежной силы, балансировочный материал притягивается к внутренней поверхности шины, что приводит к самобалансировке.

На легковом транспорте данный вид балансировки не используется по причине того, что нет возможности определить, сколько именно материала необходимо засыпать в каждое колесо. Дополнительно увеличивается и его вес.

Правильная балансировка колес

Существует ряд правил, выполнение которых гарантирует максимально качественную балансировку.

  1. диск нужно очистить от грязи. Ведь ее зачастую довольно много как на внешней, так и на внутренней части. Автоматика рассчитывает, сколько грамм груза нужно повесить на ту или иную часть колеса. Сбалансировав грязное колесо, вы рискуете потерять баланс на первой же кочке, когда большой кусок грязи отвалится от диска и вся работа пойдет «коту под хвост»;
  2. обязательно нужно снять все старые балансировочные грузы;
  3. ещё достаточно часто встречается ситуация, когда шина просто не встала до конца на свое место. Снаружи это заметить можно не всегда, а вот на балансировку может влиять довольно сильно;
  4. различные пластмассовые колпаки, которые одеваются сразу по выходу из шиномонтажа, так же способны внести дисбаланс в только что сбалансированное колесо.

Как часто стоит делать балансировку колес

Рекомендуемая частота проведения разная. Кто-то говорит, что она необходима каждые 10 тысяч километров, кто-то настаивает на 20 тысячах. Если вы почувствовали, что при движении бьет руль, присутствует излишняя вибрация корпуса, не поленитесь посетить шиномонтаж. Тем самым вы, возможно, сэкономите на более дорогостоящем ремонте.
Надеемся, что после прочтения данной статьи, у вас уже не останется вопросов, зачем нужна балансировка колес, и нужно ли ее делать.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Статическая балансировка рабоч их колес вращающихся механизмов

Каусов М.А.

Аннотация

Надежная и исправная работа вращающихся механизмов зависит от большого числа факторов, таких как: соосность валов агрегата; состояние подшипников, их смазка, посадка на валу и в корпусе; износ корпусов и уплотнений; зазоры в проточной части; выработка сальниковых втулок; радиальный бой и прогиб вала; дисбаланс рабочего колеса и ротора; подвеска трубопроводов; исправность обратных клапанов; состояние рам, фундаментов, анкерных болтов и многое другое. Очень часто упущенный небольшой дефект, как снежный ком тянет за собой другие, а в результате выход оборудования из строя. Только учитывая все факторы, точно своевременно диагностируя их, и соблюдая требования ТУ на ремонт вращающихся механизмов, можно добиться безотказной работы агрегатов, обеспечить заданные рабочие параметры, увеличить межремонтный ресурс, снизить уровень вибрации и шума. Планируется посвятить теме ремонта вращающихся механизмов ряд статей, в которых будут рассмотрены вопросы диагностики, технологии ремонта, модернизации конструкции, требованиям к отремонтированному оборудованию и рационализаторским предложениям по повышению качества и снижению трудоемкости ремонта.

В ремонте насосов, дымососов и вентиляторов трудно переоценить значение точной балансировки механизма. Как удивительно и радостно видеть некогда грохочущую и трясущуюся машину, которую усмирили и успокоили несколько граммов противовеса, заботливо установленные в "нужное место" умелыми руками и светлой головой. Невольно задумываешься о том, что значат граммы металла на радиусе колеса вентилятора и тысячах оборотов в минуту.

Так в чем же причина такой резкой перемены в поведении агрегата?

Дисбаланс

Попробуем представить себе, что вся масса ротора вместе с рабочим колесом сосредоточена в одной точке - центре масс (центре тяжести), но из-за неточности изготовления и неравномерности плотности материала (особенно для чугунных отливок) эта точка смещена на некоторое расстояние от оси вращения (Рисунок №1).

При работе агрегата возникают силы инерции - F, действующие на смещенный центр масс, пропорциональные массе ротора, смещению и квадрату угловой скорости. Они-то и создают переменные нагрузки на опоры R, прогиб ротора и вибрации, приводящие к преждевременному выходу агрегата из строя. Величина равная произведению расстояния от оси до центра масс на массу самого ротора - называется статическим дисбалансом и имеет размерность x см].

Статическая балансировка

Задачей статической балансировки является приведение центра масс ротора на ось вращения путем изменения распределения массы.

Наука о балансировке роторов объемна и разнообразна. Существуют способы статической балансировки, динамической балансировки роторов на станках и в собственных подшипниках. Балансируют самые различные ротора от гироскопов и шлифовальных кругов, до роторов турбин и судовых коленчатых валов. Создано множество приспособлений, станков и приборов с применением новейших разработок в области приборостроения и электроники для балансировки разных агрегатов. Что касается агрегатов, работающих в теплоэнергетике, то нормативной документацией по насосам, дымососам и вентиляторам предъявляются требования по статической балансировке рабочих колес и динамической балансировке роторов. Для рабочих колес применима статическая балансировка, т. к. при превышении диаметром колеса его ширины более чем в пять раз, остальные составляющие (моментная и динамическая) малы, и ими можно пренебречь.

Чтобы сбалансировать колесо нужно решить три задачи:

найти то самое "нужное место" - направление, на ко тором расположен центр тяжести;

определить, сколько "заветных грамм" противовеса необходимо и на каком радиусе их расположить;

уравновесить дисбаланс корректировкой массы рабочего колеса.

Приспособления для статической балансировки

Найти место дисбаланса помогают приспособления для статической балансировки. Их возможно изготовить самостоятельно они просты и недороги. Рассмотрим некоторые конструкции.

Простейшим устройством для статической балансировки являются ножи или призмы (Рисунок №2), установленные строго горизонтально и параллельно. Отклонение от горизонта в плоскостях параллельной и перпендикулярной оси колеса, не должно превышать 0,1 мм на 1 м. Средством проверки может служить уровень "Геологоразведка 0,01" или уровень соответствующей точности. Колесо одевается на оправку, имеющую опорные шлифованные шейки (в качестве оправки, можно использовать вал, заранее проверив его точность). Параметры призм из условий прочности и жесткости для колеса массой 100 кг и диаметром шейки оправки d = 80 мм составят: рабочая длинна L = p X d = 250 мм; ширина около 5 мм; высота 50 - 70 мм.

Шейки оправки и рабочие поверхности призм должны быть шлифованными для снижения трения. Призмы необходимо зафиксировать на жестком основании.

Если дать колесу возможность свободно перекатываться по ножам, то после остановки центр масс колеса займет положение не совпадающее с нижней точкой, из-за трения качения. При вращении колеса в противоположную сторону, после остановки оно займет другое положение. Среднее положение нижней точки соответствует истинному положению центра масс устройства (Рисунок №3) для статической балансировки. Они не требуют точной горизонтальной установки как ножи и на диски (ролики) можно устанавливать ротора с разными диаметрами цапф. Точность определения центра масс меньше из-за дополнительного трения в подшипниках качения роликов.

Применяются устройства для статической балансировки роторов в собственных подшипниках. Для снижения трения в них, которое определяет точность балансировки, применяют вибрацию основания или вращение наружных колец опорных подшипников в разные стороны.

Балансировочные весы.

Самым точным и в то же время сложным устройством статической балансировки являются балансировочные весы (Рисунок №4).

Конструкция весов для рабочих колес приведена на рисунке. Колесо устанавливают на оправку по оси шарнира, который может качаться в одной плоскости. При повороте колеса вокруг оси, в различных положениях его уравновешивают противовесом, по величине которого находят место и дисбаланс колеса.

Методы балансировки

Величину дисбаланса или количество граммов корректирующей массы определяют следующими способами:

методом подбора, когда установкой противовеса в точке противоположной центру масс добиваются равновесия колеса в любых положениях;

методом пробной массы - Мп, которую устанавливают под прямым углом к "тяжелой точке", при этом ротор совершит поворот на угол j. Корректирующую массу вычисляют по формуле

Мк = Мп ctg j

или определят по номограмме (Рисунок №5): через точку, соответствующую пробной массе на шкале Мп, и точку, соответствующую углу отклонения от вертикали j, проводят прямую, пересечение которой с осью Мк дает величину корректирующей массы.

В качестве пробной массы можно использовать магниты или пластилин.

Метод кругового обхода

Самым подробным и наиболее точным, но и наиболее трудоемким является метод кругового обхода. Он применим и для тяжелых колес, где большое трение мешает точно определить место дисбаланса. Поверхность ротора делят на двенадцать или более равных частей и последовательно в каждой точке подбирают пробную массу Мп, которая приводит ротор в движение. По полученным данным строят диаграмму (Рисунок №6) зависимости Мп от положения ротора. Максимум кривой соответствует "легкому" месту, куда необходимо установить корректирующую массу

Мк = (Мп max + Мп min)/2.

Способы устранения дисбаланса

После определения места и величины дисбаланса его необходимо устранить. Для вентиляторов и дымососов дисбаланс компенсируется противовесом, который устанавливается на внешней стороне диска рабочего колеса. Чаще всего для крепления груза используют электросварку. Этот же эффект достигается снятием металла в "тяжелом" месте на рабочих колесах насосов (по требованиям ТУ допускается снятие металла на глубину не более 1 мм в секторе не более 1800). При этом корректировку дисбаланса стараются проводить на максимальном радиусе, т. к. с увеличением расстояния от оси, возрастает влияние массы корректируемого металла на равновесие колеса.

Остаточный дисбаланс

После балансировки рабочего колеса из-за погрешностей измерений и неточности устройств сохраняется смещение центра масс, которое называется остаточным статическим дисбалансом. Для рабочих колес вращающихся механизмов нормативная документация задает допустимый остаточный дисбаланс. Например, для колеса сетевого насоса 1Д 1250 - 125 задается остаточный дисбаланс 175 г х см (ТУ 34 - 38 - 20289 - 85).

Сравнение методов балансировки на различных устройствах

Критерием сравнения точности балансировки может служить удельный остаточный дисбаланс. Он равен отношению остаточного дисбаланса к массе ротора (колеса) и измеряется в [мкм]. Удельные остаточные дисбалансы для различных методов статической и динамической балансировки сведены в таблицу №1.

Из всех устройств статической балансировки, весы дают самый точный результат, однако, это устройство самое сложное. Роликовое устройство, хотя и сложнее параллельных призм в изготовлении, но проще в эксплуатации и дает результат не многим хуже.

Основным недостатком статической балансировки является необходимость получения низкого коэффициента трения при больших нагрузках от веса рабочих колес. Повышение точности и эффективности балансировки насосов, дымососов и вентиляторов можно достичь методами динамической балансировки роторов на станках и в собственных подшипниках.

Применение статической балансировки

балансировка вибрация подшипник электродвигатель

Статическая балансировка рабочих колес эффективное средство снижения вибрации, нагрузки на подшипники и повышения долговечности машины. Но она не панацея от всех бед. В насосах типа "К" можно ограничиться статической балансировкой, а для роторов моноблочных насосов "КМ" требуется динамическая, т. к. там возникает взаимное влияние небалансов колеса и ротора электродвигателя. Необходима динамическая балансировка и для роторов электродвигателей, где масса распределена по длине ротора. Для роторов с двумя и более колесами, имеющих массивную соединительную полумуфту (например СЭ 1250 - 140), колеса и муфта балансируются отдельно, а затем ротор в сборе балансируют динамически. В отдельных случаях для обеспечения нормальной работы механизма необходима динамическая балансировка всего агрегата в собственных подшипниках.

Точная статическая балансировка - это необходимая, но иногда не достаточная основа надежной и долговечной работы агрегата.

Размещено на Allbest.ru

Подобные документы

    Причины вибрации центробежных машин. Приспособления для проведения статической балансировки. Устранение неуравновешенности ротора (дисбаланса) относительно оси вращения. Определение и устранение скрытого дисбаланса. Расчет момента силы трения качения.

    лабораторная работа , добавлен 12.12.2013

    Балансировка ротора машин и балансировка гибких роторов как задача оценивания дисбалансов. Условие допустимости одной статической балансировки. Оценивание методом наименьших квадратов. Целевая функция метода наименьших квадратов и численные эксперименты.

    дипломная работа , добавлен 18.07.2011

    Анализ технологического процесса балансировки, обзор применяемого оборудования и выявление недостатков в работе. Разработка технологического процесса и устройства набора грузиков. Построение структурной и силовой схемы системы управления, выбор датчиков.

    дипломная работа , добавлен 14.06.2011

    Виды повреждений зубчатых колес и причины их возникновения. Типы поверхностных макроразрушений материала зубьев. Зависимость между твердостью рабочих поверхностей зубьев и характером их повреждений. Расчет нагрузочной способности зубчатых колес.

    реферат , добавлен 17.01.2012

    Расширение технологических возможностей методов обработки зубчатых колес. Методы обработки лезвийным инструментом. Преимущества зубчатых передач - точность параметров, качество рабочих поверхностей зубьев и механических свойств материала зубчатых колес.

    курсовая работа , добавлен 23.02.2009

    Характеристика и химический состав низколегированных и углеродистых сталей, применяемых для повышения долговечности рабочих органов машин. Свойства электродных материалов для наплавки. Технология электрошлаковой наплавки зубьев ковшей экскаваторов.

    курсовая работа , добавлен 07.05.2014

    Понятие и применение фрикционной передачи, ее конструкция, основные преимущества и недостатки, расчетная схема. Определение максимальной величины механического изнашивания на рабочих поверхностях колес открытой фрикционной цилиндрической передачи.

    курсовая работа , добавлен 17.11.2010

    Сведения о частотных характеристиках деталей. Расчет форм и частот собственных колебаний рабочих лопаток ГТД, методы и средства их измерения. Конструкция и принцип работы устройств для их зажима при контроле ЧСК. Способы снижения вибрационных напряжений.

    курсовая работа , добавлен 31.01.2011

    Требования предъявляемые зубьям шестерен. Термическая обработка заготовок. Контроль качества цементованных деталей. Деформация зубчатых колес при термической обработке. Методы и средства контроля зубчатых колес. Поточная толкательная печь для цементации.

    курсовая работа , добавлен 10.01.2016

    Материал для изготовления зубчатых колес, их конструктивные и технологические особенности. Сущность химико-термической обработки зубчатых колес. Погрешности изготовления зубчатых колес. Технологический маршрут обработки цементируемого зубчатого колеса.

← Вернуться

×
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:
Я уже подписан на сообщество «i-topmodel.ru»