Импортозамещение в отрасли. Инновации в водоснабжении Новые технологии в водоснабжении за рубежом

Подписаться
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:

«Водоканал Санкт-Петербурга» представил сегодня два новых проекта: новый блок подготовки питьевой воды на Южной водопроводной станции и инновационную систему управления водоснабжением города (квартал К-17) сообщает официальный портал Администрации Санкт-Петербурга .В церемонии приняли участие губернатор Петербурга Валентина Матвиенко, директор ГУП «Водоканал Санкт-Петербурга» Феликс Кармазинов и заместитель министра регионального развития Анатолий Попов. Валентна Матвиенко сообщила, что в 2006 году правительство Санкт-Петербурга приняло решение о модернизации Южной водопроводной станции - одной из самый крупных в городе. Она подает до 900 тыс. кубометров воды в сутки потребителям Невского, Московского, Фрунзенского, Кировского и Красносельского районов. Строительство нового блока началось в 2007 году. Разработчиками технологического решения стала израильская компания «Тахал». На строительство этого комплекса из городского бюджета было выделено 3 млрд. 100 млн. рублей. «Это самый современный блок в России, аналогов которому нет. Он включает целый комплекс очистных сооружений. Многослойная система очистки позволяет добиться самого высокого качества воды, соответствующей всем международным и российским нормативам», - сказала губернатор. Производительность нового блока – 350 тысяч кубометров воды в сутки, это практически 20% воды, которая ежесуточно подается в городе. Уникальность блока еще и в том, что он позволяет решить проблему промывной воды, с помощью которой осуществляется регулярная очистка фильтров. Раньше эта вода сбрасывалась прямо в Неву. В новом блоке она проходит очистку. И благодаря переходу на замкнутый цикл использования промывной воды значительно снижается негативное воздействие на окружающую среду. К настоящему времени все строительные работы завершены, блок запущен в пуско-наладку. Подача воды потребителям начнется в конце 2010 года. Представляя журналистам проект квартала К-17, Феликс Кармазинов отметил, что подобная идея не реализована нигде в мире, кроме Петербурга. Проект работает в Красносельском районе на базе Урицкой насосной станции с 2008 года. Здесь создана инновационная система управления водоснабжением, которая позволяет в режиме реального времени отслеживать прохождение воды до каждого потребителя. Реализация проекта позволила оптимизировать работу насосных станций, в удаленном режиме контролировать их состояние, исключить избыточные напоры. Важным итогом стали такие показатели, как сокращение среднемесячного энергопотребления более чем на 42%, уменьшение непроизводительных потерь воды на 39%, сокращение количества повреждений на сетях на 32%. Инновационная система гарантирует петербуржцам отсутствие неплановых аварийных отключений и возможность экономии оплаты за воду. Валентина Матвиенко сообщила, что до середины 2011 года к новой инновационной системе управления будет подключено 40% потребителей. До конца 2012 года в эту систему войдет весь город. «Сегодня Петербург ведет Россию вперед», - сказал заместитель министра регионального развития Анатолий Попов. Он подчеркнул, что ввод нового блока на Южной водопроводной станции – это позитивный шаг развития не только Петербурга, но и всей России. «На примере Петербурга мы видим, как курс руководства страны на модернизацию, энергосбережение и энергоэффективность реально дает положительные результаты. Когда вся остальная Россия только думает о реализации каких-либо проектов, Петербург претворяет это в жизнь», – сказал заместитель министра. Валентина Матвиенко поблагодарила трудовой коллектив ГУП «Водоканал Санкт-Петербурга», проектировщиков, всех, кто участвовал в строительстве нового блока и реализации инновационной системы управления водоснабжением Петербурга.

От качества воды, которую ежедневно пьёт человек, зависит не только его пищеварение. Эта жидкость влияет на самочувствие, здоровье, иммунитет, внешний вид, качество сна и ещё массу факторов. Уже давно человечество не стремится к получению для своих нужд дистиллированной воды, которая когда-то считалась эталоном. Теперь требования стали более современными и зависят от целевого направления: для ежедневного употребления в пищу, для изготовления лекарств, для полива растений и т.д.

Очистка для любых целей начинается с ликвидации механических частиц, которые видны невооружённым взглядом. Такая мера не только улучшает конечный результат, но и уберегает тонкие фильтры. Важно понимать, что в любом методе существуют как сильные стороны, так и недостатки. Все современные инновации и прогрессивные технологии направлены на то, чтобы достичь оптимального качества очищающейся жидкости, обеспечив минимальное количество недостатков, присущих процессу.

Для пищевых целей

К качеству питьевой воды предъявляют самые высокие требования, поскольку оптимальные значения конечного продукта влияют и на вкусовые характеристики различных блюд и напитков, и на организм человека.

Нанофильтрация

Одна из самых современных технологий в первую очередь нашла применение в таких странах, как Франция, Голландия и США.

Нанофильтрация обладает следующими преимуществами:

  • идеально удаляет цветность;
  • избавляет от галогенных примесей органики;
  • выводит ионы хлора безреагентным методом.

Главным плюсом считается высокоэффективная борьба с хлорсодержащими остатками, которые нередко присутствуют в воде, подаваемой по общему трубопроводу после обеззараживающей очистки.

Среди недостатков новой методики можно выделить необходимость в обеспечении многоступенчатой предварительной обработки, которая выведет из раствора все механические частицы и взвешенные вещества.

Для получения продукции экстра-качества перед нанофильтрами могут оборудовать установки обратного осмоса и коагуляционные системы.

Выполнение всех этих требований автоматически делает нанофильтрацию самым дорогим методом, что не позволяет использовать её в массовых масштабах. Такая технология используется для особых категорий: недоношенных детей, в постоперационных реабилитационных периодах, для приготовления искусственного питания грудных детей и т.д.

Фотокатализация

Ещё одна технология подготовки питьевой воды, которая изобретена недавно, но получила одобрение всех мировых специалистов в данной индустрии.

Главные её преимущества:

  • отсутствие предварительной обработки химическими или другими методами;
  • эффективное удаление взвешенных веществ;
  • выведение органических примесей.

Первые подобные очистные приборы выпущены в Великобритании и Нидерландах. В тубе находится одна или несколько капиллярных мембран, которые пропускают очищаемые потоки. Чем больше таких мембран, тем выше производительность установки. Трубчатая система способствует тому, что в установке не возникает застойных зон, в которых могут образоваться донные залежи.

Низкая производительность (до 200 кубов в сутки) не даёт наладить серийное производство для высокомощных потребителей. К тому же, высокое потребление электроэнергии, за счёт которой обеспечивается достаточная скорость потока, обращает на себя внимание. Фотокатализаторы целесообразно применять в производствах, получающих электроэнергию от солнечных батарей или от ветра.

Рулонные аппараты

Очередная новинка водоочистки – рулонные аппараты. Тестирования в лабораториях для таких установок уже завершены, теперь они поступают в производство.

Их преимущества:

  • эффективность в борьбе с высокой цветностью (до 150) и взвешенными веществами;
  • возможность регулировки скорости потока и производительности;
  • простота схемы;
  • лёгкость монтажа.

Рулонные аппараты имеют небольшое гидравлическое сопротивление, а на отдельном участке оборудованы открытым каналом, который позволяет легко удалять образовавшийся осадок. Очистка проводится также при помощи повышения скорости потока, который выносит из рулонного аппарата отложения.

Минусом является то, что систему нужно оборудовать специальной механической доочисткой, чтобы содержащиеся твёрдые элементы не засоряли узкие места в трубе. Зато энергопотребление рулонных аппаратов довольно скромное – 0,5 КВт на 1 метр кубический очищенной воды.

Опреснители

Пресные водоёмы не всегда доступны для водоснабжения, что становится всё большей проблемой. Недостаток пресной воды заставляет учёных постоянно разрабатывать и совершенствовать новые методы опреснения.

В Массачусетсе разработана новая принципиальная схема опреснения, которая основана на разделении ионов и чистых молекул без использования любых мембран.

При шоковом электродиализе, предложенном учёными, поток проходит через пористую керамику, по обе стороны которой оборудованы мощные электроды. Между ними подаётся сильный разряд, образующий ударную волну, которая режет поток на 2 части. В одной из них сосредоточена пресная, а во второй – солёная вода. Перегородка, которая установлена дальше по мере продвижения, изолирует эти части друг от друга.

Система такой инновационной очистки не засоряется, не производит осадка, поэтому не нуждается в периодическом очищении. Кроме того, сильные разряды убивают бактерии и все биологические загрязнители, из-за этого дополнительное обеззараживание и стерилизация не проводится.

Материалы для производства установки имеют умеренную стоимость, что даёт надежду на скорый массовый запуск такой системы по берегам солёных водоёмов.

Наномембрана

Метод отделения соли при помощи пористого материала нанотолщины предложен в Иллинойском университете.

Материал, из которого изготовлена мембрана – дисульфид молибден. Его раскатывают до толщины в несколько нанометров, что позволяет значительно снизить затраты на электроэнергию, необходимую для перемещения потока сквозь керамический слой. Тонкая мембрана позволяет обходиться минимальным давлением внутри системы, что снижает частоту засорения. Химические свойства молибдена дисульфида заставляют воду проницать фильтр с высокой скоростью за счёт притяжения к молибдену и отталкивания от серы.

Такая быстрая и высокоэффективная технология взята на вооружение многими крупными фермерскими хозяйствами, которые легко и недорого смогут решить проблему с поливом обширных территорий в береговой зоне.

Промышленные и сточные воды

Очистка бытовых- или промстоков является необходимым условием для многих предприятий и частных домов. Для бытовых нужд эта мера позволяет избавиться от запаха, который распространяется по участку от выгребной ямы, и препятствует образованию донных осадков, ухудшающих просачивание жидкости в грунт. Стоки промышленных производств тем более должны подвергаться предварительной обработке и очистке до входа в общую систему канализации, чтобы не нанести ущерб городским очистным сооружениям.

УФ-облучение

Такая технология очистки позволяет обеззараживать стоки от потенциально опасных объектов, таких как специфические производства биологических веществ или инфекционные больницы. Облучение для обеззараживания не влияет на здоровье человека, но надёжно устраняет бактерии, вирусы, грибки и прочие микроорганизмы.

Недостатком методики является то, что ультрафиолет влияет на большинство микробов, но не на все без исключения. При высокой мутности ультрафиолет может поглощаться загрязнённым слоем, поэтому эффективность водоочистки снизится. Это требует применения добавочных механических или химических фильтров для повышения надёжности. К тому же, система не имеет высокой мощности, поэтому на крупных предприятиях она не применяется.

Медно-цинковая технология

Прогрессивная разработка промышленной водоподготовки основана на применении гранул, содержащих медь и цинк. Эти два металла имеют разные заряды, поэтому загрязнители притягиваются либо к одному, либо к другому полюсу, оставаясь на поверхности гранул.

Кроме очищения, медно-цинковая технология убирает ионы жёсткости, делая воду умягчённой.

Недостатком является то, что в технологическом процессе образуется много обратной жидкости с высокой концентрацией загрязняющих металлов, которые должны утилизироваться через дренаж. Это повышает общий расход воды по счётчику, что сказывается на затратах производства.

Кроме того, медно-цинковая мембрана не оказывает во время очистки влияния на микроорганизмы, поэтому грибок, поселившийся на ней, сначала снижает эффективность, а потом сводит её к минимуму. Это вынуждает часто менять сработанные мембраны.

Септики

Эта технология используется для частных домов и небольших производств уже давно, но в последнее время она претерпела ряд изменений и стала более дешёвой и эффективной.

Современные септики содержат в своём составе бактерии, которые не реагируют на хлор в стоках, что раньше представляло большую проблему. Туалеты, находящиеся на участке, не требуют никаких затрат электричества для содержания и обогрева, исключается и необходимость даже редкой откачки содержимого выгребных ям.

Современный септик включает в себя 2 части: гравитационный отстойник и биологический очиститель. После отстойника, в котором оседают все взвеси, стоки попадают в объём, насыщенный микроорганизмами, перерабатывающими большинство органических и неорганических загрязнителей.

Эффективность современных септиков равняется 98%. Ил, который образовывается в отстойниках, используется в качестве органического удобрения, повышающего фракционные характеристики плодородных почв.

Анаэробные и аэробные микроорганизмы, которые содержатся в новых септиках для очистки бытовых стоков, являются устойчивыми к агрессивным средам и не погибают от резкого изменения рН среды.

Особая водоподготовка

Для изготовления сверхчистых растворов в медицине и лабораторных исследованиях необходима вода, свободная от различных примесей. И хотя известно, что идеальной чистоты на практике добиться невозможно, учёные без устали совершенствуют очистные системы для получения воды экстра-класса.

Продукт выхода – бидистиллят – приближается к химической чистоте. В новых бидистилляторах соединены несколько ступеней фильтров: ультрафильтрация, двухкаскадный осмос и обмен ионов в фильтрах смешанного действия.

После прохождения всех этапов очистки раствор носит статус высокоомного, что означает уникальное значение удельного сопротивления (17-18 МОм/см). Именно такие характеристики необходимы для получения сверхточных результатов лабораторных и медицинских экспериментов и исследований.

Деминерализация и деионизация

Современные технологии сделали возможным получение воды с минимальным содержанием минералов и ионов, приближающимся к нулю. Новые приборы, обеспечивающие такой результат, при помощи электрических зарядов на пластинах в колонках дистиллятора выводят максимально возможное количество загрязнителей, понижая их концентрацию до возможного на нынешнее время минимума.

Кроме того, в системе содержится мембрана обратного осмоса и комплексная смола для ионного обмена.

С применением деминерализованной и деионизованной составляющей реактивы дают минимальную погрешность во время анализов и практически не оказывают действия на живые ткани во время экспериментов.

Таким образом, можно сделать вывод, что технологии очистки во всех сферах активно развиваются, исследователи не останавливаются на достигнутом, внедряя в эту область новые достижения химической, механической, биологической и других видов обработки. Прогресс и возникновение современных методов позволяет улучшать результаты, а комплексный подход в использовании предложенных методик позволяет надеяться на удешевление получения чистой воды в будущем.

Мы ищем новые, в первую очередь нестандартные и эффективные подходы к решению проблем в отрасли водоснабжения и водоотведения. Такой подход позволяет нашим заказчикам оптимизировать затраты на устройство инженерных систем и сооружений водопроводно-канализационного хозяйства, минимизировать эксплуатационные затраты, решать сложные проблемные задачи.

Вот наш взгляд на некоторые из них:

ПРОБЛЕМА: существующие очистные сооружения не обеспечивают очистку сточных вод до требуемых нормативов качества, многочисленные мероприятия по наладке неэффективны, а средств на полноценную реконструкцию ОС нет .

ВОЗМОЖНОЕ РЕШЕНИЕ: мы разработали и предлагаем блочные и блочно-модульные установки физико-химической доочистки сточных вод полной (высокой) заводской готовности, созданные на базе серийных установок линейки ВКМ.Р. В подавляющем большинстве случаев применение установок доочистки в два и более раз дешевле реконструкции существующих очистных сооружений, в три-четыре раза быстрей по срокам реализации и может быть выполнено без остановки работы действующих ОС.

ПРОБЛЕМА: существующие сооружения очистки воды для хозяйственно-питьевых нужд, существующие очистные сооружения сточных вод или какое-либо пищевое производство загрязняет атмосферу, источает неприятные запахи, что, естественно, приводит к дальнейшим неприятным последствиям в виде штрафов и пр.

ВОЗМОЖНОЕ РЕШЕНИЕ: мы разработали и предлагаем блочные установки озоновой очистки и обеззараживания воздуха. Установки эффективны и безопасны в эксплуатации, имеют дублированную систему деструкции остаточного озона, систему контроля содержания озона в очищенном воздухе. И, что немаловажно, данное решение ДЁШЕВО в эксплуатации.

ПРОБЛЕМА: нет технической возможности отвода канализационных сточных вод от отдельного объекта, либо населенного пункта в крупную систему городской канализациии или на городские очистные сооружения ввиду либо значительной удаленности последних, либо ввиду неприемлемой расчетной стоимости такого мероприятия, а любые врианты локального сброса очищенных сточных вод блокируются жесткой позицией компетентных инстанций: "...либо "Рыбхоз", либо запрет!".

ВОЗМОЖНОЕ РЕШЕНИЕ: мы предлагаем блочные и блочно-модульные установки очистки хозяйственно-бытовых сточных вод линейки ВКМ.Р., комплектация которых предусматривает оборудование для физико-химической доочистки очищенных биологическим способом сточных вод. Установки обеспечивают выполнение самых жестких нормативов!

Подробно - см. раздел Установки биологической очистки хозяйственно-бытовых сточных вод, дополнительная информация в соответствующей статье на нашем сайте.

24.03.2016

ГУП «Водоканал Санкт-Петербурга» ведет системную работу по развитию экономики знаний на предприятии - увеличению доли применяемых инновационных технологий, продукции и материалов.

Развитие экономики знаний в ГУП «Водоканал Санкт-Петербурга» направлено на повышение эффективности деятельности предприятия с помощью внедрения экономически целесообразных и инновационных решений. Такая деятельность позволяет получать экономический эффект за счет использования новых знаний, оптимизации потребления энергоресурсов, сокращения трудозатрат, а также повышения эффективности работы сооружений.

Системный подход ГУП «Водоканал Санкт-Петербурга» к развитию экономики знаний заключается в том, что охватывается весь цикл внедрения инноваций на предприятии: поиск, апробация, оценка и применение в производственной деятельности.

Одним из примеров внедрения инновационной технологии на производстве Водоканала может служить вакуумная канализация. Ее применение позволяет эффективно и экономически выгодно решать одну из серьезных проблем Санкт-Петербурга - наличие неохваченных централизованными системами водоснабжения и водоотведения территорий.

В 2015 году было получено техническое свидетельство о пригодности применения данной технологии в России, непосредственная поддержка была оказана Комитетом по энергетике и инженерному обеспечению и институтом Ленгипроинжпроекта.

Выполненные работы по проектированию сетей водоотведения хозяйственно-бытовых стоков в ряде населенных пунктов Санкт-Петербурга показали, что при использовании традиционной напорно-самотечной системы канализации на строительство потребуются существенные затраты. Это связано, прежде всего, с преобладающим равнинным рельефом местности и, соответственно, необходимостью строительства большого количества насосных станций. Например, только для поселка Лисий Нос понадобилось бы строительство 17 канализационных насосных станций.

Технология вакуумной канализации имеет целый ряд преимуществ по сравнению с традиционной напорно-самотечной системой: меньшая стоимость строительно-монтажных работ (на 30-50 %) - за счет применения труб меньшего диаметра, меньшая глубины их заложения, отсутствие смотровых колодцев; более короткий срок выполнения строительно-монтажных работ; гибкость трассировки (возможность обхода препятствий); исключение возможности попадания в атмосферу запахов и выхода сточных вод на поверхность при засорах участков трубопроводов.

Для внедрения технологии вакуумной канализации в России в январе 2015 года Министерство строительства выдало техническое свидетельство №4461-15, подтверждающее пригодность вакуумной канализации для применения в строительстве. В настоящий момент разрабатываются проекты канализования пос. Торики и пос. Лисий Нос с внедрением вакуумной канализации. Сметная стоимость этих проектов значительно ниже проектов, предполагающих использование традиционной системы канализации.

В рамках развития экономики знаний Водоканалом также ведется активная работа в направлении поиска новых эффективных технологий по доочистке и обеззараживанию очищенных сточных вод для внедрения на всех канализационных сооружениях Петербурга.

Эта работа ведется в соответствии с водным и санитарно-эпидемиологическим законодательством, по которому запрещается сброс в водные объекты сточных вод, не подвергшихся санитарной очистке и обезвреживанию, а также сточных вод, в которых содержатся возбудители инфекционных заболеваний.

В данный момент для выполнения этих требований на новых и реконструируемых сооружениях города применяется технология ультрафиолетового обеззараживания (УФО).

Однако для повышения надежности и эффективности процессов обеззараживания необходимо внедрение новых систем доочистки сточных вод. С 2009 года ГУП «Водоканал Санкт-Петербурга» проводит апробацию различных технологий по доочистке и обеззараживанию на пилотных установках в действующих условиях эксплуатации сооружений предприятия.

Также в рамках развития экономики знаний Водоканал постоянно ведет работу по поиску инновационных решений, внедрение которых позволит повысить качество услуг населению по водоснабжению и водоотведению, а также снизить негативное воздействие на окружающую среду.

Например, в последние годы ведутся работы по тестированию технологий предотвращения распространения неприятных запахов от объектов водоотведения, очистки поверхностного стока, внедрению мембран в систему водоподготовки и очистки сточных вод.

Большое внимание уделяется поиску технологий использования полезных качеств осадка сточных вод, а также золы, которая образуется в процессе сжигания осадка сточных вод.

Ведется активная работа по поиску и апробации новых экологически безопасных реагентов, а также материалов, например, песка для печей сжигания осадка сточных вод.

Одно из новых эффективных решений, уже внедренных в условиях Санкт-Петербурга - это использование микротрубчатой канализации в системе водоотведения. При этой технологии уже проложенные сети водоотведения используются для прокладки в них оптоволоконных сетей связи. В условиях плотной городской застройки это решение позволяет экономить средства и не нарушать целостность дорожных покрытий (не нужно вести земляные работы и прокладывать новые траншеи для систем связи), а значит и не доставлять неудобств жителям Петербурга.

Описание:

Систем подготовки питательной воды паровых котлов среднего и высокого давления («крышных котельных» и мини-ТЭЦ) для теплоснабжения зданий или городских жилых комплексов (ЦТП) (в комбинации разработанных систем нанофильтрации с системами обратного осмоса).

Современным зданиям – современные технологии водоснабжения!

Разработка новых технологий и аппаратов на основе метода нанофильтрации для систем водо- и теплоснабжения городских зданий

А. Г. Первов , проф., д-р техн. наук, кафедра водоснабжения МГСУ

А. П. Андрианов , канд. техн. наук, кафедра водоснабжения МГСУ

Д. В. Спицов

В. В. Кондратьев , инженер, кафедра водоснабжения МГСУ

Современные темпы развития строительных технологий не всегда идут в ногу с развитием технологий водоподготовки, используемых для санитарно-технического оснащения современных зданий. Применение явно устаревших технологий часто создает помехи строительству. Например, необходимость создания станций доочистки воды в зданиях заставляет решать вопросы размещения, монтажа и эксплуатации (сервисного обслуживания). Поэтому от выбранной технологии зависят не только качество воды, но и габариты сооружений, затраты на монтаж и эксплуатацию, учитывающие объемы сточных вод и воды на собственные нужды.

Традиционные технологии, использующие напорные фильтры с загрузками из песка, угля и ионообменных смол достаточно «громоздки», требуют затрат при их эксплуатации (замене загрузок или их регенерации), образуют стоки при их промывке и регенерации.

Совершенствование систем нанофильтрации позволяет создать оборудование с минимальными весом и габаритами, простотой монтажа и «наращивания» мощности, минимальными затратами на обслуживание, отсутствием реагентов и расходных материалов.

Современная экологическая ситуация способствует более широкому использованию мембранных систем. Это объясняется в первую очередь ужесточающимися требованиями к качеству питьевой воды - содержанием хлорорганических соединений, болезнетворных бактерий, фторидов, нитратов, ионов стронция и т. д. Современные мембраны демонстрируют бесспорную эффективность и универсальность в очистке воды от различных видов загрязнений. Второй главной чертой современных мембранных технологий является их «экологическая» чистота - отсутствие потребляемых реагентов и, соответственно, опасных для окружающей среды сбросов и осадков, создающих проблему их утилизации. Введение платы за пользование водопроводной водой и за сбросы в канализацию заставляет использовать водоочистные системы, потребляющие минимальное количество воды и не имеющие сбросов. Современные разработки систем водоподготовки с применением мембранных технологий позволяют снабжать инженерные системы качественной водой, тем самым обеспечив надежность и качество их работы.

Мембранные процессы ультрафильтрации и нанофильтрации давно привлекают внимание специалистов по водоснабжению благодаря своей «универсальности» - возможности одновременного удаления ряда загрязнений различной природы: биологических (бактерий и вирусов), органических (гуминовых кислот и др.), коллоидных, взвешенных, а также растворимых в ионном виде. Различия в мембранных процессах состоят в уровне очистки воды (проскоку в очищенную воду тех или иных загрязнений), зависящем от размера пор мембран.

Технология нанофильтрации известна достаточно давно и уже начинает применяться в питьевом водоснабжении благодаря эффективному снижению содержания органических соединений (цветности, летучих хлорорганических соединений) и железа, а также жесткости .

Метод нанофильтрации уже широко применяется для очистки поверхностных и подземных вод, в том числе и на крупных городских сооружениях (например, на станциях в Париже - 10000 м 3 /ч и Нидерландах - 6000 м 3 /ч).

Однако до сих пор метод нанофильтрации рассматривается как разновидность метода обратного осмоса со всеми его недостатками: необходимостью тщательной предочистки для предотвращения образования отложений карбоната кальция и осадков органических и коллоидных веществ; высокими эксплуатационными расходами, связанными с дозированием реагентов предочистки, использованием моющих растворов и высокой стоимостью замены мембранных модулей; традиционными мембранными модулями типа «рулон», не отличающимися высокой надежностью. Высокие расходы реагентов и другие эксплуатационные затраты заставляют специалистов пока скептически относиться к использованию нанофильтрации для подготовки воды высокого качества на крупных водоочистных станциях несмотря на бесспорную эффективность в сравнении с «классическими» коагуляционными и окислительно-сорбционными технологиями.

В настоящее время широкие масштабы промышленного внедрения имеет метод ультрафильтрации, который применяется в основном на очистных сооружениях городских водопроводов: с декабря 2006 года - в Москве на Юго-Западной станции (а также на водоочистных станциях Парижа, Лондона, Амстердама, Сингапура, в ряде городов США, Канады).

Однако применение ультрафильтрационных мембран (с размером пор 0,01-0,1 мкм) имеет весьма ограниченную область применения (снижение коллоидных частиц и бактерий) и не универсально при очистке вод различного состава. Поэтому в схемах очистки воды ультрафильтрация используется в сочетании с другими технологиями (коагуляционной и окислительно-сорбционной). Главными достоинствами ультрафильтрации является очень высокая удельная производительность (более 100 л/м 2 ч по сравнению с 35-40 л/м 2 ч у нанофильтрации) и возможность проведения промывки мембран обратным током для удаления с мембран загрязнений.

Разработка новой технологии очистки воды с применением нанофильтрации

Таким образом, целью работы стало изучение возможности преодоления основных недостатков метода нанофильтрации и создание технологии, сочетающей эффективность нанофильтрации и простоту ультрафильтрации.

Предпосылки для создания такой технологии созрели уже давно . Известны способы очистки поверхностных вод с помощью нанофильтрации крупных европейских фирм Norit (Нидерланды) и PCI (Великобритания), использующие специальные трубчатые конструкции, позволяющие снизить осадкообразование и проводить гидравлические промывки со сбросом давления для «срыва» загрязнений с поверхности мембран . Однако аппараты трубчатых конструкций имеют очень малую удельную поверхность мембран и существенно увеличивают объемы установок и их энергопотребление, что в конечном счете выражается в высоких значениях удельных капитальных и эксплуатационных затрат.

Современные мембранные аппараты рулонной конструкции обладают большим преимуществом перед аппаратами с мембранами трубчатой формы в виде полого волокна, используемых в современных ультрафильтрационных установках - это плотность «упаковки мембран» или высокая удельная поверхность мембран на единицу объема аппарата. При одинаковых размерах «стандартных» мембранных модулей (диаметр 200 мм, длина 1000 мм) суммарная поверхность мембран в ультрафильтрационном модуле составляет 18-20 м 2 , а в нанофильтрационном 35-40 м 2 . Более того, стоимость производства рулонного модуля с плоскими мембранами значительно (на 50-60 %) дешевле, чем половолоконного. Поэтому основным направлением работы стало усовершенствование рулонной конструкции с целью повышения надежности работы и «устойчивости» к загрязнениям. Несовершенство конструкции рулонного элемента связано с наличием в нем сетки-сепаратора (рис. 1), являющейся «ловушкой» для загрязнений. Поэтому создание аппаратов с «открытым» каналом без мешающей сетки позволяет избежать накопления загрязнений во время работы и обеспечить возможность проведения гидравлических промывок со сбросом давления . Подбор оптимальных по своим свойствам нанофильтрационных мембран и разработка технологии производства мембранных модулей различных типоразмеров позволили создать безреагентные технологии для ряда случаев очистки воды. Отсутствие реагентов в схеме обеспечивается, с одной стороны, высокой эффективностью мембран в отношении задержания растворенных примесей, с другой - постоянным отводом загрязнений с поверхности мембран благодаря автоматизированным гидравлическим промывкам и поддержанием фильтрующей поверхности мембран «в чистоте».

Благодаря разработанным конструкциям аппаратов и автоматизированным промывкам созданы технологии, позволяющие очищать воду с высоким содержанием взвешенных веществ, железа, жесткости, цветности. В зависимости от состава очищаемой воды (главным образом содержания органических веществ различной природы) выбирается марка мембран с наиболее подходящими селективными свойствами. Для очистки поверхностных и подземных вод были опробованы различные типы мембран, но наибольшую эффективность продемонстрировали новые разработки мембран из ацетата целлюлозы со специальными стабилизирующими добавками. Из-за гидрофильной поверхности мембраны чрезвычайно эффективно задерживают ионы железа, растворенные органические вещества. Кроме того, благодаря поверхностным свойствам ряд коллоидных и органических соединений хуже осаждается на ацетатных мембранах, чем на композитных. Описанные выше положения были доказаны путем всесторонних исследований, описанных в прилагаемых публикациях. Аналогов разработанным аппаратам и мембранам пока нет как у отечественных, так и у зарубежных фирм. Технология получения мембран и производства рулонных элементов с «открытым» каналом также представляет ноу-хау и подробно не раскрывается. Попытки усовершенствовать каналы рулонных элементов проводились рядом авторов давно, однако результаты не были доведены до широкого промышленного внедрения вследствие сложности технологии. В настоящей работе используется технология изготовления, ранее изложенная и запатентованная, но благодаря совместным действиям авторов усовершенствованная и находящаяся в стадии патентования.

Разработанные нанофильтрационные аппараты оказываются конкурентоспособными по стоимости, производительности и режиму промывки с ультрафильтрационными аппаратами, будучи гораздо эффективнее по частным свойствам. На рис. 2 показаны зависимости производительности аппаратов «стандартного» размера от времени при очистке поверхностной воды из реки.

Вследствие потери производительности при образовании на мембранах осадков и необратимого забивания пор взвешенными частицами средняя производительность ультрафильтрационных мембран оказывается на 40-50 % меньше «паспортного», отличаясь на 30-40 % от производительности аппарата с нанофильтрационными мембранами.

Технология доочистки воды из водопровода в городских зданиях

Вода в централизованных водопроводах часто содержит взвешенные коллоидные вещества (например, гидроокись железа), а также бактерии вследствие вторичного загрязнения воды в водоводах. В ряде случаев наблюдается повышенное содержание хлор-органических веществ (во время паводков). Традиционно для удаления взвешенных веществ используются механические напорные фильтры, а для снижения содержания органических веществ и запахов - фильтры с сорбционной загрузкой.

Главными недостатками такого подхода являются: использование достаточно громоздких фильтров (обычно импортных из стеклопластика диметром 0,75-1,2 м и высотой более 2 м); трудности при монтаже фильтров в существующих помещениях; сложности обслуживания и замены загрузок; достаточно быстрое истощение сорбционной емкости угля и необходимость его замены.

В последнее время вместо механических фильтров используются установки ультрафильтрации, позволяющие обеспечить более глубокое удаление из воды коллоидов железа, бактерий и вирусов. Кроме того, мембранные установки компактны, имеют значительно меньший вес и объем по сравнению с механическими фильтрами, что особенно важно при их использовании и размещении в городских зданиях. Однако использование сорбционных фильтров в городских зданиях требует, вследствие ограниченной сорбционной емкости загрузок, достаточно высоких затрат на сервисное обслуживание таких установок.

Применение нанофильтрационных установок позволяет решить проблему удаления органических загрязнений из водопроводной воды без применения сорбционных фильтров и при минимальных эксплуатационных затратах.

Расчеты и исследования показывают, что удаление методом нанофильтрации большинства (свыше 90 %) органических загрязнений позволяет продлить ресурс сорбционных фильтров в 10-20 раз или соответственно уменьшить их объем, ограничившись использованием картриджных фильтров только на случай присутствия в воде запахов в период паводков или аварийных ситуаций на водоисточнике. Кроме того, нанофильтрационные мембраны частично убирают из воды жесткость и щелочность, делая воду пригодной для использования в системах теплоснабжения и горячего водоснабжения, избавляя заказчика от необходимости использования умягчителей и дополнительных расходных материалов (таблетированной соли).

Современные заказчики на городских объектах часто сами формируют дополнительные требования к качеству воды, значительно более жесткие, чем требования существующих международных стандартов ВОЗ и СанПиН, что вызвано наличием в зданиях «особых» потребителей - поликлиник, медицинских оздоровительных центров, предприятий общепита и др.

Так, например, при проектировании систем СТОЗ небоскреба «Федерация» проектировщики «столкнулись» с требованиями по содержанию железа -0,05 мг/л, ГСС (галогенсодержащих соединений) -10 мкг/л (против нормативов ВОЗ: 0,3 мг/л и 200 мкг/л соответственно). Похожие требования оказались решающими при выборе систем нанофильтрации для водоснабжения зданий Центральной тыловой таможни и поликлиники ФСБв Москве в 2002 году (рис. 3, 4).

В настоящей работе проведены исследования по сравнению эффективности снижения в водопроводной воде окисляемости и содержания растворенных органических веществ с использованием систем ультрафильтрации с сорбционной доочисткой и систем нанофильтрации. Качество очищенной воды оценивалось по показателям окисляемости .

Качество воды обобщенно оценивается по характеру кривых светопоглощения, где молекулярному весу и природе органических веществ соответствуют определенные длины волны.

На рис. 5 показаны кривые светопоглощения водопроводной воды, пропущенной через нанофильтрационные мембраны 4 и фильтр с загрузкой из угля 2 и 3. Применение нанофильтрационных мембран 4 позволяет получить воду с низкими показателями окисляемости. При дополнительном использовании сорбционных фильтров после нанофильтрации только для удаления запаха ресурс их увеличивается во много раз. Результаты ресурсных испытаний сорбционного фильтра (определение его сорбционной способности) показаны на рис. 6.

Экономический эффект от применения технологии нанофильтрации определяется сокращением затрат на обслуживание установок доочистки.

Технология очистки воды для целей теплоснабжения и вентиляции

Современное состояние городского строительства требует решения проблем снабжения зданий не только качественной питьевой водой, удовлетворяющей требованиям СанПиН, но в ряде случаев водой для специальных технологических нужд:

подпитка контуров теплосети и отопления;

подпитка контуров оросителей и испарителей систем кондиционирования воздуха;

Подпитка паровых котлов «крышных котельных» для систем теплоснабжения.

В зависимости от требований к качеству подготовленной воды в системах нанофильтрации используются различные типы мембран с различными показателями селективности (солезадерживающей способностью). При использовании мембранных установок для нужд подпитки теплосети и горячего водоснабжения, карбонатный индекс KI очищенной воды должен удовлетворять следующим условиям:

КI=[Са +2 ]· ≤ 2-5,

где , значения концентраций кальция и щелочности, выраженные в мг-экв/л.

Для обеспечения таких требований идеально подходят нанофильтрационные мембраны в сочетании с разработанными мембранными элементами с «открытым каналом», исключающим образование застойных зон в аппаратах и образование в них осадка карбоната кальция, резко снижающего время работы аппарата .

При необходимости получения питательной воды для паровых котлов и контуров систем кондиционирования воздуха требуется вода со значениями жесткости на уровне 0,01-0,02 мг-экв/л. Традиционно для получения глубоко умягченной воды используются двухступенчатые системы Na-катионирования или (в настоящее время) вместо I ступени Na-катионирования - установки обратного осмоса . И в том, и в другом случае схемы глубокого умягчения требуют высоких эксплуатационных затрат (на таблетированную соль, ингибитор, моющие растворы, частое сервисное обслуживание) и решения проблем утилизации регенерационных растворов. При использовании представленных в работе разработок созданы схемы двухступенчатого умягчения (с использованием на I ступени мембранных нанофильтрационных аппаратов) и аппаратов обратного осмоса на II ступени (рис. 7).

Такие схемы позволяют избежать применения реагентов при их эксплуатации и обеспечить длительный (свыше 2500 часов) период безостановочной работы. В ряде случаев целесообразно использовать специально разработанные патроны с порошкообразным ингибитором для повышения надежности систем обратного осмоса.

Для определения эксплуатационных характеристик мембранных схем с использованием аппаратов обратного осмоса и нанофильтрации (определение типов моющих растворов, времени непрерывной работы и др.) разработана специальная компьютерная программа.

Пример сравнения эксплуатационных затрат различных схем глубокого умягчения показан на рис. 8.

Благодаря использованию новых типов мембран и мембранных аппаратов время работы максимально увеличено, что ведет к снижению затрат по обслуживанию установки (рис. 9).

Общий вид двухступенчатых мембранных систем показан на рис. 10.

Описанные технологии применяются при разработке:

Систем очистки воды для централизованного водоснабжения: станции очистки поверхностной воды и станции очистки подземной воды производительностью до 10000 м 3 /ч; системы полностью безреагентные;

Систем очистки воды для микрорайонов и комплексов промышленных и торговых зданий;

Систем улучшения качества водопроводной воды для отдельных жилых и офисных зданий;

Систем подготовки воды подпитки теплосетей и бойлеров жилых и промышленных зданий;

Систем улучшения качества питательной воды из технических водопроводов городских предприятий;

Систем подготовки питательной воды паровых котлов среднего и высокого давления («крышных котельных» и мини-ТЭЦ) для теплоснабжения зданий или городских жилых комплексов (ЦТП) (в комбинации разработанных систем нанофильтрации с системами обратного осмоса). Разработанные технологии позволяют решать поставленные проблемы с применением компактного, легко монтируемого оборудования с простым «наращиванием» мощности, обеспечивающего автоматизированный круглосуточный режим работы, не нуждающегося в реагентах и расходных материалах и требующих сервисных мероприятий не чаще чем через 6 месяцев непрерывной работы.

Для водоснабжения крупного (жилого или гостиничного здания) система водоподготовки может состоять из четырех мембранных блоков общей производительностью 50 м 3 /ч. Габариты каждого блока (производительностью 12 м 3 /ч) составляют 1,5 м (глубина) х 1,5 м (высота) х 0,5 м (ширина). Общие габариты станции производительностью 50 м 3 /ч составляют (ШхДхВ) 3,5х1 ,5х1,5 м. В комплект поставки каждого блока входят: повысительный насос, мембранные аппараты, картриджи доочистки с углем. Эксплуатация системы состоит в проведении профилактических промывок (1 -2 раза в год) и замене угольных картриджей (1 раз в год). Срок службы мембран составляет 5 лет. Компоновка одного блока показана на рис. 11, общий вид одного блока производительностью 12 м 3 /ч показан на рис. 12.

Литература

  1. Первов А. Г. Андрианов А. П. Современные мембранные системы нанофильтрации для подготовки питьевой воды высокого качества // Сантехника. 2007. № 2.
  2. Futselaar M. et all. Direct capillary nanofiltration for surface water. // Desalination. V. 157(2003), p. 135-136.
  3. Futselaar H., Schonewille H., MeerW. Direct capillary nanofiltration for surface water. (Presented at the European Conference on Desalination and the Environment: Fresh Water for All, Malta, 4-8 May 2003. EDS, IDA) // Desalination. 2003. Vol.157, p. 135-136.
  4. Bruggen B., Hawrijk I., Cornelissen E., Vandecasteele С Direct nanofiltration of surface water using capillary membranes: comparison with flat sheet membranes. // Separation and Purification Technology. 2003.
  5. Bonn_ P.A.C., Hiemstra P., Hoek J.P., Hofman J.A.M.H. Is direct nanofiltration with air flush an alternative for household water production for Amsterdam? // Desalination. 2002. V. 152, p. 263-269.
  6. Web-сайт Trisep http://www.trisep.com.
  7. Web-сайт PIC Membranes http://www.pcimem.com.
  8. Pervov Alexei G., Melnikov Andrey G. The determination of the required foulant removal degree in RO feed pretreatment. // IDA world conference on Desalination and Water reuse August 25-29, 1991, Washington. Pretreatment and fouling.
  9. Pervov A.G. A simplified RO process design based on understanding of fouling mechanisms.// Desalination 1999, Vol. 126.
  10. Riddle Richard A. Open channel ultrafiltration for reverse osmosispretreatment. // IDA world conference on Desalination and Water reuse August 25-29, 1991, Washington. Pretreatment and fouling.
  11. Первов А.Г. Мембранный рулонный элемент. Патент №2108142, выд. 10.04.1998.
  12. Irvine Ed, Welch David, Smith Alan, Rachwal Tony. Nanofiltration for colour removal - 8 years operational experience in Scotland. // Proc. Of the Conf. on Membranes in Drinking and Industrial Water Production. Paris, France, 3-6 October 2000. V 1, p. 247-255.
  13. Pervov A.G. Scale formation prognosis and cleaning procedure schedules in reverse osmosis operation. // Desalination 1991, Vol. 83.
  14. Hilal Nidal, Al-Khatib Laila, Atkin Brian P., Kochkodan Victor, Potapchenko Nelya. Photochemical modification of membrane surfaces for (bio)fouling reduction: a nano-scale study using AFM // Desalination 2003, Vol. 156, p. 65-72.
  15. Hilal Nidal, Mohammad A. Wahab, Atkina Brian, Darwish Naif A.Using atomic force microscopy towards improvement in nanofiltration membranes properties for desalination pre-treatment: A review // Desalination 2003, Vol. 157, p. 137-144.
  16. Первов А. Г., Мотовилова Н. Б., Андрианов А. П., Ефремов Р. В. Разработка систем очистки цветных вод северных районов на основе технологий нанофильтрации и ультрафильтрации // Очистка и кондиционирование природных вод: Сб. науч. трудов. Вып. 5. М., 2004.
  17. Первов А. Г., Андрианов А. П., Спицов Д. В., Козлова Ю. В. Выбор оптимальной схемы доочистки водопроводной воды в городских зданиях с использованием мембранных установок // Сборник докладов седьмого международного конгресса «Вода: экология и технология». Том 1.
  18. Первов А. Г., Бондаренко В. И., Жабин Г. Г. Применение комбинированных систем обратного осмоса и ионного обмена для подготовки питательной воды паровых котлов // Энергосбережение и водоподготовка. 2004. № 5.

← Вернуться

×
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:
Я уже подписан на сообщество «i-topmodel.ru»