Технологическое оборудование пищевых производств лекции для магистров. Основные технологические процессы пищевых производств

Подписаться
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:

КРАТКАЯ АННОТАЦИЯ МОДУЛЯ

Пищевая промышленность удовлетворяет потребности населения в пищевых продуктах. По размеру она производит около пятой части валовой продукции промышленности в Беларуси. В пищевой промышленности занято около 9% всего промышленно-производственных фондов страны.

О большом значении пищевой промышленности свидетельствует и то, что ее продукция составляет более 90% всего потребляемого населением продовольствия.

В состав пищевой промышленности входит много различных производств. При всем разнообразии технологии все эти производства объединяет, прежде всего общность назначения их продукции. Важнейшими отраслями пищевой промышленности являются: мукомольная, крупяная, хлебопекарная, сахарная, кондитерская, мясная, рыбная, консервная, маслобойная, сыроваренная, чайно-кофейная, винодельческая, пивоваренная и др.

Пищевая промышленность характеризуется чрезвычайно широким размещением. Широкому ее размещению способствует большое разнообразие и распространенность ее сырьевых ресурсов. Однако отдельные ее отрасли по особенностям их размещения сильно отличаются друг от друга, и в этом отношении пищевую промышленность можно разделить на три группы отраслей.

Одну группу составляют отрасли, перерабатывающие нетранспортабельное (или малотранспортабельное) сырье (свеклосахарная, плодоперерабатывающая промышленность, винодельческая, винокуренная промышленность). Эти отрасли размещают в районах производства сырья.

Другую группу составляют отрасли, перерабатывающие транспортабельное сырье и выпускающие малотранспортабельную или скоропортящуюся продукцию (хлебопечение, некоторые производства кондитерской, лекарственная, пивоваренная промышленности и др.) их размещают в районах потребления продукции.

В третью группу входят отрасли, которые можно размещать как в сырьевых, так и в потребительских районах (в зависимости от обстоятельств).

Дидактический модуль «Основные технологические процессы пищевых производств» рассчитан на самостоятельное изучение студентами экономических специальностей ряда вопросов организации технологических процессов хлебобулочного производства, переработки мяса и молока. Изучая данную тему, они должны получить четкое понятие о технико-экономических показателях эффективности технологий пищевых производств.

ТЕМАТИЧЕСКИЙ ПЛАН

1. Технология хлебобулочного производства.

2. Технология мяса и мясопродуктов.

3. Технология переработки молока.

1. ТЕХНОЛОГИЯ ХЛЕБОБУЛОЧНОГО ПРОИЗВОДСТВА

Процесс производства хлеба и булочных изделий слагается из 6 этапов:

1. прием и хранение сырья;

2. подготовка к пуску в производство;

3. приготовление теста;

4. разделка теста;

5. выпечка;

6. хранение выпеченных изделий и отправка их в торговую сеть.

Прием и хранение сырья охватывает период приема, перемещения в складские помещения, последующее хранение всех видов основного и дополнительного сырья, поступающего на хлебопекарное производство. К основному сырью относят муку, воду, дрожжи и соль, а к дополнительному - сахар, жировые продукты, яйца и другие виды сырья.

От каждой партии сырья берется анализ на соответствие их нормативам для производства определенных видов хлебобулочных изделий.

Подготовка сырья к пуску заключается в том, что на основании данных анализов отдельных партий муки, имеющихся на хлебозаводе, сотрудники лаборатории устанавливают целесообразно с токи зрения хлебопекаренных свойств смесь отдельных партий муки. Смешивание муки отдельных партий осуществляется в мукосмесителях, из которых смесь направляется на контрольный просеиватель и в бункер-накопитель, из которого по мере необходимости будет подаваться на приготовление теста.

Вода хранится в емкостях - баках холодной и горячей воды, из которых поступает в дозаторы, обеспечивающих ее необходимую температуру для приготовления теста.

Соль предварительно растворяется в воде, раствор фильтруется, доводится до необходимой концентрации и направляется для приготовления теста.

Прессованные дрожжи предварительно измельчаются и в мешалке превращаются в смеси с водой в суспензию, затем поступают для приготовления теста.

Приготовление теста. При безопарном способе приготовление теста состоит из следующих процессов:

Дозирование сырья. Соответствующими дозирующими устройствами отмериваются и направляются дежу тестомесильной машины необходимые количества муки, воды заданной температуры, дрожжевой суспензии, раствора соли и сахара.

Замес теста. После заполнения дежи необходимыми компонентами включают тестомесильную машину и производят замес теста. Замес должен обеспечивать однородное по физико-механическому составу тесто.

Брожение и обминка теста. В замешенном тесте происходит процесс спиртового брожения, вызываемый дрожжами. Углекислый газ, выделяющийся при брожении разрыхляет тесто, за счет чего оно увеличивается в объеме.

Для улучшения физико-механических свойств тесто во время брожения подвергают одной или нескольким обминкам. Обминка заключается в том, что тесто в деже повторно перемешивается 1 - 3 минуты. Во время обминки из теста механически удаляется излишняя часть углекислого газа.

Общая продолжительность брожения теста составляет 2 -4 часа. После брожения дежу с готовым тестом с помощью дежеопрокидывателя поворачивают в положение, при котором тесто выгружается в бункер - тестоспуск, расположенный под тестоделительной машиной.

Разделка теста. Деление теста на куски осуществляется на тестоделительной машине. Куски теста с делительной машины поступают в тестокруглитель, затем проходят несколько операций по формированию нужной формы хлебобулочного изделия. Поле этого тестовые заготовки проходят окончательную расстройку при tº 35 - 40º и влажности 80 - 85% на протяжении 30 - 55 мин. в специальной камере. Правильное определение оптимальной длительности окончательной расстройки оказывает большое влияние на качество хлебобулочных изделий. Недостаточная длительность расстройки снижает объем изделий, разрыв верхней корки, излишняя - приводит к расплывчатости изделий.

Выпечка. Выпечка тестовых заготовок хлебов массой 500-700г. происходит в пекарной камере хлебопекарной печи при температуре 240-280º в течение 20-24 мин.

Хранение выпеченных изделий и отправка их в торговую сеть. Выпеченные хлебобулочные изделия направляются в хлебохранилище, где укладываются в лотки, которые загружаются в транспорт и перевозятся в торговую сеть.

На хлебобулочные изделия имеются стандарты, по которым определяется их качество. Отклонение от этих стандартов может быть вызвано рядом дефектов и болезней хлеба. Дефекты хлеба могут быть обусловлены качеством муки и отклонениями от оптимальных режимов проведения отдельных технологических процессов производства хлеба, его хранения и транспортировки.

К дефектам хлеба, вызванным качеством муки можно отнести:

Посторонний запах

Хруст на зубах, обусловленный наличием песка в муке.

Горький вкус.

Липкость мякины, если мука смолота из проросшего или морозобойного зерна.

К дефектам хлеба при неправильном проведении технологических процессов относятся:

1.Неправильное приготовление теста.

2.Неправильная разделка теста (растройка).

3.Неправильная выпечка (недостаток или избыток времени выпечки).

Наиболее распространенными болезнями хлеба являются картофельная болезнь и плесневение.

Картофельная болезнь хлеба выражается в том, что мякиш хлеба под действием микроорганизмов, вызывающих эту болезнь, делается тягучим и приобретает неприятный запах. Возбудителями этой болезни являются споровые микроорганизмы, которые имеются в любой муке. Важную роль играют концентрация этих микроорганизмов и температура выпечки хлеба.

Плесневение хлеба вызывается попаданием плесневых грибов и их спор на уже выпеченный хлеб.

2. ТЕХНОЛОГИЯ МЯСА И МЯСОПРОДУКТОВ

Для приемки партии скота по живой массе его рассортировывают по возрастным группам и категориям упитанности в соответствии со стандартами на живой скот. Крупный рогатый скот и молодняк разделяют на три категории: высшую, среднюю и ниже средней. Такая же классификация и у мелкого рогатого скота. Свиньи делятся по категориям: жирные, беконные, мясные и тощие. Птица и кролики делятся на 3 категории: 1, 2 и нестандартную.

Для создания необходимых условий подготовки животных к убою на мясокомбинатах созданы цехи предубойного содержания скота и птицы. Подготовка животных и птицы к убою заключается в освобождении их кишечно-желудочного тракта, чистке и мытья. Для освобождения желудочно-кишечного тракта кормление КРС прекращается за 24 часа, свиней - 12 часов, птицы - 8 часов. Поение животных и птицы не ограничивают.

После предубойной выдержки животные поступают на первоначальную переработку для получения мясной туши. Технологический процесс убоя скота и разделки туш осуществляется в следующей последовательности: оглушение, обескровливание и сбор пищевой крови, отделение головы и конечностей, съем шкуры, извлечение внутренних органов, распиловка туши на две полутуши.

Существует несколько способов оглушения: электрическим током, механическим воздействием, анестизация химическими веществами. Основной способ на мясокомбинатах - электроток.

После оглушения с помощью лебедки или элеватора животные подаются в убойный цех, где первоначально разрезают сонную артерию, зажимом перекрывают пищевод. Затем производится сбор крови (закрытая и открытая системы). После обескровливания с туши снимают шкуру, затем отделяют голову и конечности. Извлечение внутренних органов необходимо делать сразу же после убоя не позднее 30 мин. без повреждения желудочно-кишечного тракта. После извлечения внутренних органов туши распиливают на две половины. Эти полутуши поступают на реализацию или переработку.

Колбасными называют изделия, приготовленные на основе мясного фарша с солью, специями и добавками с тепловой обработкой или без нее. Соленые изделия - это продукты, приготовленные из сырья с неразрушенной или крупноизмельченной структурой.

В зависимости от сырья и способов обработки различают следующие виды колбасных изделий: варенные, полукопченые, копченые, фаршированные, кровяные колбасы и т.д. и т.п.

В течение последующих лет ученые и специалисты разных стран ведут исследования по созданию комбинированных мясопродуктов, сочетающих в себе традиционные потребительские свойства при использовании белка различного происхождения.

Решение задачи создания полноценных комбинированных мясопродуктов необходимо увязывать с развитием нового направления в пищевой технологии - проектированием продуктов питания.

Баночные консервы - это мясопродукты, фасованные в герметичную тару и стерилизованные или пастеризованные нагревом. По видам сырья консервы делят в натуральном соку, с соусами и желе.

По назначению консервы делят на закусочные, первое блюдо, второе блюдо, полуфабрикаты.

По способу подготовки пред употреблением консервы делят на используемые без тепловой обработки, используемые в нагретом состоянии, в охлажденном состоянии.

По длительности срока хранения различают консервы длительного хранения (3-5 лет) и закусочные.

Одной из основных задач технологов мясной промышленности является создание безотходных технологий переработки сырья. Этого можно достигнуть путем совершенствования существующих технологических схем с рациональным использованием запаса сырья, технологического оборудования, транспортных средств.

3. ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ МОЛОКА

Главное условие получения доброкачественных молочных продуктов - соблюдение санитарно-гигиенических правил при дойке и первичной обработке молока, а также условий кормления и содержания животных. Особое внимание необходимо уделять мойке вымени и молочного оборудования. Механическая обработка молока включает очистку от механических примесей и загрязнений биологического происхождения, сепарирование.

Очистка молока от механических примесей может осуществляться с помощью фильтрации под давлением через хлопчатобумажную ткань. Наиболее совершенным способ является использование сепараторов - молокоочистителей, в которых под действием центробежной силы происходит разделение молока и механических примесей. Для механической обработки молока используют кроме центробежных молокоочистителей сепараторы - сливкоотделители, универсальные сепараторы.

Тепловая обработка является важной и обязательной операцией в технологическом процессе производства молочных продуктов. Основная цель нагревания - обезвредить продукт в микробиологическом отношении и в сочетании с охлаждением предохранить от порчи в процессе хранения.

В молочной промышленности широко используются два основных вида тепловой обработки молока нагреванием - пастеризация и стерилизация.

Тепловая обработка молока при температурах ниже точки кипения называется пастеризацией. Цель пастеризации - уничтожение вегетативных форм микроорганизмов в молоке. На практике наиболее распространена кратковременная пастеризация (74-76º С, 20 сек.) молоко проходит через нагретые пластины.

Под стерилизацией понимается тепловая обработка молока при температурах свыше 100º С с целью полного уничтожения вегетативных форм бактерий и их спор. Стерилизованное молоко приобретает привкус кипячения.

На практике применяются следующие режимы стерилизации: I - стерилизация в бутылках при температуре 103-108º С в течение 14-18 мин, II - стерилизация в бутылках и стерилизаторах при температуре 117-120ºС, III - мгновенная стерилизация при температуре 140-142 ºС с разливом в бумажные пакеты.

После пастеризации молоко немедленно охлаждается до различной температуры в зависимости от технологического процесса выработки готового продукта.

Пастеризованное молоко выпускают в мелкой расфасовке, а также в цистернах.

Его вырабатывают по следующей технологической схеме: приемка сырья - качественная оценка - очистка молока (при 35-40ºС), охлаждение пастеризация (74-76ºС) охлаждение (4-6ºС), подготовка тары - укупорка и маркировка - хранение. Срок хранения пастеризованного молока при температуре 8º С не более 20 часов с момента выпуска. Качество пастеризованного молока контролируют по следующим показателям: температура, кислотность, содержание жира, оценка по запаху и вкусу.

Процесс производства пастеризованного молока осуществляется по двум принципиальным схемам: с одно и двухступенчатым режимом стерилизации. При одноступенчатом режиме стерилизации молоко подвергается термической обработке один раз - до или после разлива в бутылки. При этом лучше первый вариант. Технологическая схема: приемка сырья - качественная оценка - очистка - подогрев (75-80ºС) - стерилизация (135-150ºС) - охлаждение (15-20ºС) подготовка тары, разлив - проверка качества.

Более стойкий продукт получается при двухступенчатой стерилизации. При этом способе молоко стерилизуется дважды: до разлива (в потоке) и после разлива (в бутылках).

Топленое молоко - пастеризованное молоко при длительной термической обработке (топление 3-4 час., 95-99ºС).

Молоко с наполнителями: кофе, какао, фруктово-ягодные соки.

Витаминизированное молоко с добавлением витаминов А, Д, С.

Сливки: жирность - 8, 10, 20, 35%

К молочнокислым продуктам относятся: простокваша различных видов, ряженка, кефир, кумыс, йогурт и др. напитки. Общими признаками всех молочнокислых продуктов является брожение, протекающее при сквашивании молока чистыми культурами молочнокислых бактерий.

Различают две группы кисломолочных напитков: полученные только в результате молочнокислого брожения и при смешанном брожении - молочно - кислом и спиртовом.

К 1 группе относятся простокваша, ряженка.

Ко 2 группе - кефир, кумыс.

Существует два способа изготовления кисломолочных напитков: резервуарный и термостойный. Первый способ включает в себя: сквашивание молока в резервуарах - перемешивание - охлаждение в резервуарах - созревание - разлив в бутылки или пакеты. Второй способ состоит из следующих операций: разлив в бутылки - маркировка - охлаждение - созревание в холодильной камере.

Творог получают сквашиванием молока молочнокислыми бактериями с последующим удалением сыворотки. Различают творог из пастеризованного молока, предназначенный для непосредственного употребления в пищу и производства различных творожных продуктов, а также из непастеризованного молока, используемый для производства различных плавленых и других сыров, проходящих термическую обработку.

В зависимости от содержания жира творог делят на жирный (18 % жира), полужирный (9 %) и нежирный. Творог вырабатывается кислотным и сычужно-кислотным способом. По первому способу сгусток в молоке образуется в результате молочнокислого брожения, однако, при таком способе сквашивание жирного молока сгусток плохо отдает сыворотку. Поэтому таким способом получают только обезжиренный творог. Жирный и полужирный творог изготавливают сычужно-кислотным способом…

Сметана вырабатывается путем сквашивания пастеризованных сливок. Вырабатывают сметану жирностью 10 % (диетическая), 20, 25, 30, 36 и 40 % (любительская).

Сквашенные сливки перемешивают, расфасовывают, охлаждают до + 5—8 ° и оставляют на созревание на 24-48 часов.

Мороженое вырабатывают путем замораживания и взбивания молочных или фруктово-ягодных смесей в ассортименте более 50 наименований. Название мороженого зависит от состава, вкусовых и ароматических добавок. Несмотря на значительное разнообразие ассортимента производство мороженого осуществляется по схеме технологического процесса: приемка сырья - подготовка сырья - составление смеси - пастеризация (68° С, 30 минут) - гомогенизация смеси (взбивание) - охлаждение (2-6° С) - фризерование (замораживание) - расфасовка и закаливание (дальнейшее охлаждение) - хранение (18-25° С).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ

ЯРОСЛАВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра процессов и аппаратов химической технологии

УДК 66.011; 663; 664

B.C. САЛЬНИКОВ

ПРОЦЕССЫ И АППАРАТЫ

ПИЩЕВЫХ ПРОИЗВОДСТВ

Курс лекций для студентов 3-го курса /6-й семестр/

Специальности 170600 "Машины и аппараты пищевых

Производств", направление 551800 "Технологические

Машины и оборудование".

ПАХТ. 46. 170600. 551800. КЛ

Ярославль – 2002 год.

посещаемости и успеваемости на 6-й семестр

Посещаемость: 38 + 12 + 20 = 70

Отчеты по лабораторным работам: 5 x 20 = 100

Реферат /по желанию студента/: 50 /печатный 60/

Итого: 70 + 100 + 50 = 220

Автоматический кафедральный зачет, собеседование и освобождение
от экзамена с оценкой:

220-210 – отлично, 200-190 – хорошо.

Кафедральный зачет – 140-150.

^ ТЕМАТИКА ЛЕКЦИЙ – 38 ч.


  1. Вводная – 4 ч.

  2. Гидромеханические процессы – 8 ч.

  3. Тепловые процессы – 10 ч.

  4. Массообменные процессы – 16 ч.

ГИДРОМЕХАНИЧЕСКИЕ ПРОЦЕССЫ – 8 ч.


  1. Классификация, общая теория – 2 ч.

  2. Фильтрование – 2 ч.

  3. Псевдоожижение – 2 ч.

  4. Перемешивание – 2 ч.

ТЕПЛОВЫЕ ПРОЦЕССЫ – 10 ч.


  1. Основы расчета теплообменника – 4 ч.

  2. Выпаривание – 6 ч.

МАССООБМЕННЫЕ ПРОЦЕССЫ – 16 ч.


  1. Основы массопередачи – 4 ч.

  2. Перегонка – 2 ч.

  3. Ректификация – 4 ч.

  4. Сушка – 6 ч.
ТЕМАТИКА

ПРАКТИЧЕСКИХ ЗАНЯТИЙ – 12 ч.


  1. Расчет 3-х корпусной прямоточной выпарной установки – 4 ч.

  2. Расчет ректификационной установки непрерывного действия для
    разделения бинарной смеси – 4 ч.

  3. Расчет конвективных сушилок: кипящего слоя и барабанной с применением топочных газов в качестве агента – 4 ч.

ТЕМАТИКА

ЛАБОРАТОРНЫХ ЗАНЯТИЙ – 20 ч.


  1. № 28 – Фильтрование – 4 ч.

  2. № 27 – Псевдоожижение – 4 ч.

  3. № 21 – Механическое перемешивание – 4 ч.

  4. № 23 – Испытание теплообменника – 4 ч.

  5. № 24 – Кинетика конвективной сушки – 4 ч.
2.5. Содержание и выполнение курсового проекта

Целью проектирования является завершающая проверка освоения курса студентами, осуществляемая в процессе их самостоятельной инженерной работы.

Курсовой проект включает расчет типовой установки (выпарной, сушильной, ректификационной) и ее графическое оформление. Расчетно-пояснительная записка содержит описание схемы установки, конструкции аппаратов, материальные, тепловые, конструктивные и механические расчеты, мероприятия по технике безопасности, список использованной литературы. Объем записки составляет 20-40 машинописных страниц. Выполнение расчетов предполагает использование вычислительной техники.

Графическая часть курсового проекта состоит из чертежа общего вида установки в 2-3 проекциях и чертежа основного аппарата с разрезами и узлами, выполненными на листах формата А1.

В период работы студенты знакомятся с действующими ГОСТами, пользуются справочной литературой, приобретают навыки выбора аппаратуры.


    1. ^ 2.6. Содержание самостоятельной работы студента

Самостоятельная работа состоит в систематической проработке лекционного курса, самостоятельном изучении отдельных разделов и тем курса, освоении вопросов, выносимых на самостоятельное изучение и оформление лабораторных работ, выполнении и оформлении курсовых проектов, подготовке к зачетам и экзаменам.

Основная:


  1. Плановский А.Н., Николаев П.И. Процессы и аппараты химической и нефтехимической технологии. М., Химия, 1987.

  2. Касаткин А.Г. Основные процессы и аппараты химической технологии. М., Химия, 1973.
Дополнительная:

  1. Стабников В.Н., Лысянский В.М., Попов В.Д. Процессы и аппараты пищевых производств. М., Агропромиздат, 1985.

  2. Гельперин Н.И. Основные процессы и аппараты химической технологии. М., Хи-мия, 1981.

  3. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л., Химия, 1987.

  4. Дытнерский Ю.И. Основные процессы и аппараты химической технологии. Посо-бие по проектированию. М., Химия, 1983.
^ КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ КУРСА

Отдельные технологические процессы: фильтрование, выпаривание, сушка и др. – были известны человечеству еще в глубокой древности и применялись исключительно для пищевых целей. Применялась весьма примитивная аппаратура. Но ПАПП являются родоначальником и исторически сложились ранее ПАХТ.

Понятие "глубокая древность" является в значительной мере относительным. У археологов нет пока стройной системы происхождения человека. Известно, что скелет самого древнего человека найден в Африке. Возраст скелета составляет 5 млн. лет. Однако появление культуры земледелия и скотоводства, связанной с разнообразными орудиями труда и предметами быта, относят обычно к концу ледникового периода, т.е. 75-100 тыс. лет назад. Это время мы и будем называть "глубокой древностью".

Существенное влияние на развитие ПАПП оказали сахарная и винокуренная промышленности. Первоначально сырьем для производства сахара служил сахарный тростник /родина – Индия, Китай, Океания/. Еще в древности на территории Индии получали сладкий сироп /выпаривание/. Твердый сахар /кристаллизация/, по-видимому, научились делать арабы 800 лет назад. Колумб привез черенки сахарного тростника на Антильские острова. После этого Куба и Пуэрто-Рико стали главными центрами производства сахара в мире.

В конце 18 века в России начались поиски заменителей сахарного тростника, которые увенчались открытием сахарной свеклы. Первый свеклосахарный завод был построен в России в 1802 году. Примерно в это же время возник первый завод в Германии, а спустя несколько лет – во Франции. В 1812 году был создан промышленный вакуум-выпарной аппарат, в 1820 г. – фильтрпресс.

В конце ледникового периода люди стали жить в стойбищах /деревянные и каменные поселения/. Когда мужчины охотились, женщины и дети собирали в окрестностях съедобные ягоды, плоды, коренья и травы. Излишки плодов и ягод складывали в глиняные ямки, прокаленные огнем. Через месяц хранения при температуре 25-30 °С за счет естественного брожения из плодов и ягод получалось сухое вино. Этот напиток избавил людей от многих кишечных заболеваний и способствовал продлению жизни /в среднем она составляла 30-35 лет/. Открытие алкоголя привело к созданию особой культуры человечества – виноделию. 7 тыс. лет назад в древнем Египте производство вина из винограда уже было поставлено на поток, в Китае – 5 тыс. лет назад. Применялись керамические и деревянные сосуды.

Первые попытки перегонки сухого вина были предприняты в древнем Египте /Александрия/ монахом по имени Зосима де Панополис. В 1334 году алхимик из Прованса /Франция/ Арно де Вилльнев получил дистилляцией винный спирт.

На Руси испокон веков готовили медовые пиво и брагу. Производство этой "медовухи" сохранилось до сих пор в Суздале. В 14 веке монах Исидор "подсмотрел" за границей устройство самогонного аппарата и соорудил такой жe в подмосковном монастыре. Для приготовления бражки стали применять зерно /пшеница, рожь, ячмень, овес/ и дрожжи /в Германии – картофель, в Швеции – целлюлоза/. В 1813 году была создана промышленная ректификационная колонна.

Нефть и горючие газы были известны людям с древнейших времен. Нефтью заполняли светильники, зажигательные бомбы, а в древнем Египте бальзамировали умерших. Перегонка, заимствованная из винокуренной промышленности, существенно повлияла на нефтепереработку. Промышленная переработка нефти появилась в 18 веке. Так, в 1745 году в Печорском крае на реке Ухте Федор Прядунов на заводе купца Набатова ежегодно вырабатывал 20 тыс. литров очищенного керосина. В Германии керосин получен из нефти в 1830 г. /Рейхенбах/, в США – 1858 г. /полковник Дрэк/.

Переработка нефти по сути сформировала химическую технологию. Привлекая значительные материальные ресурсы и научные кадры, ХТ в 20 веке стала доминирующей. Сама ХТ в свою очередь стала подразделяться на отдельные направления, отрасли: основной органический синтез /ООС/, технология синтетического каучука /СК/, лакокраска и др. Пищевая и химико-фармацевтическая промышленности стали составной частью ХТ. Например, барабанные сушилки, разработанные ХТ, могут быть использованы для сушки и кварцевого, и сахарного песка.

Ледниковый период, остатки которого наблюдаются и сейчас, являясь по сути природным холодильником, способствовал сохранению скоропортящихся продуктов: мясо, птица, рыба и др. – и, как ни странно, выживанию человечества. Туша мамонта, добытого летом, могла прокормить людей максимум в течение недели, далее мясо портилось. Зимой эта же туша могла прокормить людей в течение нескольких месяцев. До сих пор в некоторых хозяйствах заготовляют лед зимой, а летом держат его в подполье для сохранения продуктов. В слое вечной мерзлоты /тундра/ созданы специальные хранилища, в которых в течение года государство хранит стратегические запасы мяса.

По мнению отечественного астронома проф. И.С. Шкловского /Звезды: их рождение, жизнь и смерть. – 1984, с.146/ Земля переживает ледниковый период, который длится уже 2 млн. лет, а обычная длительность ледниковых периодов /они происходят каждые 200-300 млн. лет/ составляет 10 млн. лет. Сейчас мы имеем короткую передышку /15 тыс. лет/, но уже в этом веке астрономы ожидают резкое похолодание климата Земли. Парниковый эффект, возможно придуманный для назидания, расчетами не подтверждается.

Для переработки нефти природный холодильник оказался совершенно недостаточным. Нужно было конденсировать пары легколетучих углеводо-родов и сжижать газы. Потребовалось искусственное охлаждение. В 1845 году создается воздушная холодильная машина, в 1874 г. – парокомпрессионная, в 1895 г. появляется глубокое охлаждение / жидким азотом/. Пищевая промышленность не осталась без внимания ХТ: сейчас трудно найти пищевое или торговое предприятие, где бы не было парокомпрессионной холодильной машины /глубокое охлаждение тоже исполь-зуется для быстрого замораживания пищевых продуктов/.

Химическая технология в значительной мере работает на пищевую промышленность, например, поставляет сельскому хозяйству: горючесма-зочные материалы, минеральные удобрения /к сожалению, в России в настоящее время 85% удобрений идут на экспорт/, гербициды /от сорня-ков/, инсектициды /от вредных насекомых, удивительно, люди совсем забыли саранчу, а она вдруг объявилась летом 2001 года сначала в Казахстане, затем перекинулась на Дагестан и Ставропольский край/, микроэлементы роста растений и др.

Если царская Россия была в основном сельскохозяйственной стра-ной и экспортировала зерно /англичане до сих пор предпочитают черный хлеб, испеченный из русской ржи/, а также другие продукты, то в настоящее время Россия импортирует /ввозит/: мяса 34%, молоко и молочных продуктов 20% , сахар 70%, растительное масло 41%.

Недостаточность сельского хозяйства по обеспечению продуктами питания породила стремление по созданию искусственной пищи. Начало было положено химической технологией в 19 веке.

В 1854 г. Бертело /Бертло/ синтезировал жиры /глицерин + жирные кислоты/. В годы второй мировой войны в Германии был построен завод по производству десятков тыс. тонн заменителя сливочного масла /маргарина/. В настоящее время маргарин вырабатывается также из раститель-ного масла. Натуральное сливочное масло дороже маргарина в несколько раз. Парадокс состоит в том, что, как показала проверка, опубликован-ная в СМИ, в России сейчас остались только два вида вологодского натурального сливочного масла. Все остальное масло является маргарином, но продается по цене натурального сливочного масла.

Первый синтез сахара осуществил отечественный ученый А.М. Бутле-ров в 1861 году /параформальдегид + щелочь = сахар, близкий к глюкозе/. Синтез виноградного сахара, который встречается в природе /α – глюко-за/ был выполнен в 1890 году Эмилем Фишером /из глицерина/. Глицерин применяется также как косметическое средство и пищевая добавка.

С синтезом белков дело оказалось значительно сложнее и задача до сих пор далека от решения. Ученые-химики пошли по пути расщепления природных белков на аминокислоты, изучения структуры и синтеза последних, затем их объединение в белковые молекулы. Первая аминокисло-та – глицин – была получена Браконно в 1820 году /Л. и М. Физер. Органическая химия. – 1949, с. 359/. С тех пор изучено несколько десятков аминокислот, некоторые из них синтезированы. Получены белковоподобные вещества /пластеины/ с молекулярной массой 100 тыс. и более. Природные белки имеют мол. массу в несколько миллионов /протеины/. Работы получили химико-фармацевтическое и медицинское направление. В результате были развиты: ультрацентрифугирование, рентгеноструктурный анализ, экстракция /последняя входит в дисциплину ПАПП/. Канадским ученым Бантингу и Маклеоду за открытие инсулина /1921 г./ была присуждена Нобелевская премия. Однако гормональные белки /например, инсулин, тироксин, адреналин/, полученные синтетически, пока еще во многом уступают природным белкам, получаемым экстракцией из туши быка /поджелудочная и щитовидная железы, кора надпочечников/. Поэтому в дальнейшем мясокомбинату целесообразно иметь дополнительный цех в виде фармацевтической фабрики, т.к. лекарственные препараты, получа-емые из туши быка, по стоимости намного превосходят стоимость самого быка.

Для массового производства после второй мировой воины был создан кормовой белок из нефти и древесины. В последнее время все большее внимание пищевиков привлекает соя. Зерно сои содержит: 24-45% белка, 13-27% жира, 20-32% крахмала. Приготовление из сои молока и сыра /трудно отличить от коровьего/ было известно китайцам в глубокой древности. И опять казус: соевый белок, обработанный и сформированный в волокна, которые объединяются в кусочки "мяса", в настоящее время продается в консервных банках с этикеткой "говядина" и по цене говядины.

Этиловый спирт /этанол/ является важным сырьем в производствах ООС и СК. В 19 веке этанол получали спиртовым брожением, о котором уже говорилось. В 1855 г. Бертло в лабораторных условиях получил этанол сернокислотным методом гидратации этилена. В промышленности метод был осуществлен в 1919 г. /СССР – 1933 г./. В 1948 г. в США и СССР был осуществлен промышленный синтез этанола прямой гидратацией этилена /температура 290-300 °С, давление 7-8 МПа, катализатор – фосфорная кислота. Технический этанол, полученный по этому методу, содержит до 2% диэтилового эфира /температура кипения 34,5 °С, обладает приятным запахом. Последний очень токсичен: вызывает потерю сознания и может привести к внезапной остановке сердца. В последнее время технический спирт рекой хлынул в пищевую промышленность /был обнаружен даже на Ярославском ликероводочном комбинате/. В резуль-тате ежегодно в России от напитков с техническим спиртом погибает несколько десятков тысяч человек.

Таким образом, химическая промышленность, имеющая в основном крупнотоннажные производства, в настоящее время, а тем более в будущем, в состоянии обеспечить пищевую промышленность миллионами и миллионами тонн ежегодно синтетическим пищевым сырьем: жиры, углеводы, белки. По мнению врачей, искусственная пища не может полностью заменить пищу из натуральных природных продуктов, т.к. миллионы лет эволюции наилучшим образом приспособили человеческий организм именно к последней пище. Доказано, что отсутствие в пище природных белков /мясо, птица, рыба, молочные продукты и др./ приводит к истощению человеческого организма и даже к летальному исходу. Поэтому врачи выступают против вегетарианства и всякого рода "постов". Фальсификация природных пищевых продуктов, которая наблюдается в последнее время, должна преследоваться по закону.

Обобщение производственного опыта по химической и смежным технологиям относится к началу 19 века. В России в 1828 году проф. Ф.А. Денисов опубликовал труд под названием "Пространное руководство к общей технологии...", в котором выразил идею об общности ряда основ-ных процессов и аппаратов. В конце 90-х годов 19 века проф. Александр Кириллович Крупский ввел в Петербургском технологическом институте учебную дисциплину по расчету и проектированию основных процессов и аппаратов. В 1909 году А.К. Крупский опубликовал книгу под назва-нием "Начальные главы учения о проектировании по химической технологии", которая по существу является первым учебником по дисциплине ПАХТ. В 1912 году проф. Иван Александрович Тищенко ввел на химическом факультете МВТУ курс ПАХТ в качестве самостоятельной дисциплины.

В США только в 1923 году вышел в свет труд Уокера, Льюиса и Мак-Адамса под названием "Принципы науки о процессах и аппаратах". В качестве учебника в США в 1931 году вышла книга В. Бэджера и В. Мак-Кэба "Основные процессы и аппараты химических производств".

Большой вклад в разработку отдельных разделов науки о процессах
и аппаратах внесли отечественные ученые И.А. Тищенко /теория расчета
выпарных аппаратов/, Д.П. Коновалов /основы теории перегонки жидких
смесей/, Л.Ф. Фокин и К.Ф. Павлов /оригинальные и глубокие по содер-жанию монографии/. Далее идеи курса развивались отечественными учеными: A.M. Трегубовым, С.Н. Обрядчиковым, А.Г. Касаткиным, Н.М. Жаворонковым, А.В. Лыковым /ярославец, окончил ЯГПИ им. Ушиского/, П.Г. Романковым, А.Н. Длановским, Н.И. Гельпериным, В.Н. Стабниковым, В.В. Кафаровым и др.

Следует отметить труды проф. В.Н. Стабникова /Киевский пищевой институт/, автора учебника по дисциплине ПАПП.


  1. Стабников В.Н., Харин С.Е. Теоретические основы перегонки и ректификации спирта. – Пищепромиздат, М., 1951.

  2. Стабников В.Н. Ректификационные аппараты. – М.: Машгиз, 1965.

  3. Стабников В.Н., Попов В.Д., Редько Ф.А., Лысянский В.М. Процессы
    и аппараты пищевых производств. – М.: Пищепромгиз, 1966.

  4. Стабников В.Н. Расчет и конструирование контактных устройств
    ректификационных и абсорбционных аппаратов. – Киев, Техника, 1970.

  5. Стабников В.Н., Лысянский В.М., Попов В.Д. Процессы и аппараты
    пищевых производств. – М.: Агропромиздат, 1985.
^ ПРЕДМЕТ КУРСА И ЕГО ЗАДАЧИ

Процессы и аппараты, общие для пищевой, химической, химико-фармацевтической и других смежных отраслей промышленности, получили название основных процессов и аппаратов.

Изучение теории основных процессов, принципов устройства и методов расчета аппаратов и машин составляет предмет и задачу курса.

Одной из задач курса является выявление общих закономерностей протекания различных процессов, например, для переноса вещества и тепла.

В курсе рассматриваются закономерности перехода от лабораторных процессов и аппаратов к промышленным, т.е. проблемы моделирования .

В курсе изучается так называемая макрокинетика , связанная с види-мым, массовым движением вещества: струйки, капли, пузырьки, твердые частицы и др. При этом только для объяснения некоторых явлений ис-пользуется микрокинетика , т.е. движение вещества на молекулярном уровне.

^ КЛАССИФИКАЦИЯ ПРОЦЕССОВ

В зависимости от закономерностей, характеризующих протекание процессов, последние классифицируются:


  1. ГИДРОМЕХАНИЧЕСКИЕ – смешение и разделение неоднородных газовых и жидких систем.

  2. ТЕПЛОВЫЕ – перенос тепла от одного теплоносителя к другому.

  3. МАССООБМЕННЫЕ – перенес /преимущественный/ вещества из одной фазы в другую для достижения равновесия.

В курс также входят холодильные, механические и химические процессы. Но для данной специальности они рассматриваются в других дисциплинах.

По организационно-технической структуре процессы можно разделить на периодические /нестационарные/ и непрерывные /стационарные/.

В периодическом процессе отдельные его стадии /например, нагревание – кипение – охлаждение/ осуществляются в одном аппарате, но в разное время. Экономически эти процессы целесообразны в производствах мелкого масштаба при разнообразном ассортименте выпускаемой продукции, что типично для пищевой промышленности.

В непрерывном процессе отдельные его стадии осуществляются одновременно, но в разных аппаратах /подогреватель – кипятильник – холодильник/. Экономически выгодны в средне- и крупнотоннажных произ-водствах /выпаривание/, позволяя провести механизацию и автоматизацию, а также применить стандартную аппаратуру.

^ ОБЩАЯ СХЕМА

ИССЛЕДОВАНИЯ, РАЗРАБОТКИ И РАСЧЕТА АППАРАТУРЫ


  1. На основе законов статики устанавливают начальные и конечные значения параметров процесса и направление его течения.

  2. На основе закона сохранения материи составляют материальный баланс .

  3. На основе закона сохранения энергии составляют энергетический /тепловой/ баланс.

  4. На основе законов кинетики устанавливают движущую силу и коэффициент скорости процесса.

  5. По полученным данным определяют основной размер аппарата.

  6. Рассчитывают несколько вариантов аппаратуры и на основе технико-экономического анализа определяют оптимальный вариант.

Законы статики и кинетики, сохранения материи и энергии, являясь фундаментальными законами природы, по сути сформировали дисциплину ПАПП в качестве науки. Наука отличается от других "учений" тем, что ответ на нарушение закона на каком-либо производстве следует незамедлительно: авария, пожар, взрыв, катастрофа и т.д. Во избежание этого техника безопасности /ТБ/ проходит через весь курс ПАПП. Рассмотрим изложенные выше пункты схемы чуть более подробно.


  1. ^ СТАТИКА ПРОЦЕССОВ

Любой процесс протекает до тех пор, пока система не придет в состояние равновесия. Статика рассматривает процесс в состоянии равновесия.

Различают гидростатику /учение о равновесии жидкостей/, а также тепловое, фазовое и химическое равновесие.

Например, фазовое или диффузионное равновесие для насыщенных растворов в воде при 100 °С /растворимость/:

Поваренная соль /хлористый натрий/ – 39,8 г/100 г воды; 28,5% мас.

Сахар – 487 г/100 г воды; 83% масс.

^ 2. МАТЕРИАЛЬНЫЙ БАЛАНС

В общем виде его можно записать так:

где
– количество веществ, поступающих на переработку;

– количество веществ, полученных в результате переработки

Современные технологии должны предусматривать, что потерь и отходов не должно быть /безотходные технологии/. Но пока они есть.

Отходы в пищевой промышленности обычно используются для откорма животных /дополнительный цех/.

Потери химической промышленности довольно часто отравляют окружающую среду, в том числе и население. Например, Ярославский НПЗ /Славнефть/ ежегодно "теряет" в атмосферу 100 тыс. т углеводородов. В 1999 году выбросы загрязняющих веществ /не только от химической промышленности/ в атмосферу города Ярославля составили 270 тыс. т.

Из Западной Европы с попутным ветром в Россию ежегодно поступает 2 млн. т сернистого газа и 10 млн. т сульфатов.

^ 3. ЭНЕРГЕТИЧЕСКИЙ /ТЕПЛОВОЙ/ БАЛАНС

В общем виде записывается так:

где
– тепло, поступающее с исходными веществами,

– тепловой эффект процесса,

– тепло, уходящее с конечными продуктами,

– потери тепла в окружающую среду.

Потери тепла неизбежны; но они должны быть сведены к минимуму /подбор тепловой изоляции/ или утилизированы /тепловые потери аппаратов учитываются в системе отопления цеха/. Одним из лучших теплоизоляторов считается стекловолокно /маты/, плотность 120-200 кг/м 3 , коэффициент теплопроводности 0,04 Вт/м.°С, которое к тому же явля-ется надежной защитой от грызунов.

Потери тепла в виде "дымовой завесы" от печей, котельных и тепловых электростанций /ТЭС/ связаны с загрязнением окружающей среды. Так, ТЭС, работающие на каменном угле, на 1 млн. кВт-ч выра-батываемой электроэнергии выбрасывают в атмосферу: 15 т сернистого газа, 10 т золы и 3 т оксидов азота.

Дисциплина ПАПП имеет обширный арсенал аппаратуры для очистки /до ПДК – предельно допустимая концентрация/ дымовых газов от пыли и вредных газовых компонентов, а также для утилизации из них тепла: аппараты пылегазоочистки, контактные теплообменники, абсорберы, адсорберы и др.

^ 4. КИНЕТИКА ПРОЦЕССОВ

Кинетика рассматривает процессы в их развитии, в их стремлении к состоянию равновесия.

– Степень отклонения системы от состояния равновесия выражает движущую силу процесса.

Для процессов дисциплины ПАПП применима основная кинетическая закономерность :

– Скорость процесса прямо пропорциональна движущей силе и обратно пропорциональна сопротивлению.

Для механических и химических процессов эта закономерность не применяется. Но эти процессы подчас находятся на производстве в одной технологической линии с основными процессами, например, сахарную свеклу перед выщелачиванием измельчают или шинкуют. Поэтому в некоторых вузах указанные процессы вводят в дисциплину ПАПП.

Для гидромеханических процессов основная кинетическая законо-мерность принимает вид:

/3/

где V – объем протекающей жидкости, м 3 ,

S – сечение аппарата, м 2 ,

τ – время, с,

ρ – плотность жидкости, кг/м 3 ,

G = 9,81 м/с 2 ,

R Г – гидравлическое сопротивление, кг/м 2 .с,

K Г – коэффициент скорости, м 2 .с/кг,

ΔH d – разность полных гидродинамических напоров, м.

Последняя величина определяется по уравнению Бернулли:

В учебной и технической литературе за гидравлическое сопротив-ление часто ошибочно принимаются потери напора в аппарате /Δp n или h n /.

Для тепловых процессов кинетическое уравнение записывается:

/5/

Где Q – количество переданного тепла, Дж,

F – поверхность теплопередачи, м 2 ,

Δt – разность температур между теплоносителями, К или °С,

R – термическое сопротивление, м 2 .К/Вт,

K – коэффициент теплопередачи, Вт/м 2 .К.

Для массообменных процессов:

/6/

Где М – количество вещества, перенесенного из одной фазы в другую, кг или кмоль,

F – поверхность контакта фаз /массопередачи/, м 2 ,

K Y – коэффициент массопередачи, кг/м 2 .c.
,

R Y – диффузионное сопротивление, м 2 .с. /кг,

ΔY – разность между равновесной и рабочей /или наоборот/ концент-рациями для одной из фаз, кг А/кг В – относительные массовые доли, или кмоль А/кмоль В – относительные мольные доли.

Например, если для растворения сахара при 100 °С принимается чистая вода /Y=0/, то в начальный момент времени движущая сила процесса растворения составит:

ΔY = Y нас. – Y = 487/100 – 0 = 4,87 отн. мас. долей.

^ 5. ОСНОВНОЙ РАЗМЕР АППАРАТА

Определяется из интегрального вида уравнений /3, 5, 6/, например, из уравнения /5/, т.е. из основного уравнения теплопередачи:

/7/

Δt ср – средняя разность температур между теплоносителями, К или °С.

По основному размеру аппарат принимается по каталогу /стандарт-ный/ или разрабатывается конструктивно /нестандартный/.

^ 6. ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ

Расчеты по этой теме обычно бывают очень громоздкими, поэтому проводятся с применением ЭВМ. Так, для расчета теплообменника возможны 264 варианта.

Прежде всего принимается критерий оптимальности. Таких крите-риев может быть несколько: экономические /удельная себестоимость продукции, прибыль производства и др./, производственные /произво-дительность, качество продукта и др./ и т.д. Оптимальный вариант принимается по максимуму или минимуму критерия оптимальности. При выборе вариантов, помимо всего прочего /например, тип теп-лоносителя, его начальная температура и др./, учитываются:

А/ материал аппарата должен соответствовать требованиям техники безопасности – почность, антикоррозийность, безвредность;

Б/ адаптация человека /эргономика/;

В/ эстетические требования;

Г/ экологические требования.

МАТЕРИАЛЫ

А. Металлы

Следует избегать контакта с пищевыми продуктами таких металлов, как Fe, Аl, Сu, Zn, Cd, Ni, Ti, которые используются до сих пор самостоятельно или в виде покрытий.

Токсичность указанных выше металлов.

/Грушко Я.M., Вредные неорганические соединения в промышленных выбросах в атмосферу. Справ. изд. – Л.: Химия, 1987. – 192 с./


  1. Al – алюминий /температура плавления 660,4 °С, плотность 2699 кг/м 3 /.
Вызывает пневмосклероз, алюминоз, поражение печени, дерматит, acтму, изменения в тканях глаза.

Перед такой "перспективой" возникает желание собрать всю домашнюю алюминиевую посуду и сдать ее в металлолом.


  1. Fe – железо /1539 °С, 7870 кг/м 3 /.
Отставание в росте, изменения в легких, раздражающее действие /глаза, слизистые оболочки/, канцерогенное действие.

  1. Сd – кадмий / 321,1 °С, 8650 кг/м 3 /.
Головокружение, головная боль, слюнотечение, кашель, рвота, носовое кровотечение, прободение носовой перегородки, металлический вкус во рту, желто-золотистое окрашивание десен – "кадмиевая кайма", эмфизема и фиброз легких, поражение костей, канцерогенное, мутагенное и тератогенное действие.

  1. Сu – медь /1084,5 °С, 8960 кг/м 3 /.
Мутагенное действие, головная боль, головокружение, слабость, боли в мышцах, нарушение функции печени и почек, раздражает кожу и глаза, изъявление носовой перегородки и роговицы глаза, расстройства нервной системы, сладкий вкус во рту, повышение температуры тела до 38-39 °С, "медная лихорадка".

  1. Ag – серебро /261,9 °С, 10500 кг/м 3 /.
Пигментация кожи и слизистых оболочек.

  1. Zn – цинк /419,5 °С, 7130 кг/м 3 /.
Канцерогенное действие, сладкий вкус во рту, сухость в горле, кашель, тошнота рвота, раздражение кожи и слизистых оболочек, бессонница, похудение, ослабление памяти, потливость, малокровие, кровоизлияния, отек легких.

  1. Ni – никель /1455 °С, 8900 кг/м 3 /.
Канцерогенное, мутагенное и тератогенное действие.

  1. Ti – титан /1665 °С, 4320 кг/м 3 /.
Канцерогенное действие.

/Малахов А.И., Андреев Н.Х. Конструкционные материалы химической аппаратуры. – М.: Химия, 1978. – 224 с./

А/ Коррозионно-стойкие /нержавеющие/ конструкционные стали.

Например, сталь 2Х13 /0,2% углерода, 13% хрома/, термостойкость до 600 °С, предел прочности 850 МПа.

Б/ Обычные углеродистые стали ст.2 и ст.З с покрытием:

– оловом, Sn, /231,9 °С, 5850 кг/м 3 /, жесть, консервные банки.

– эмалями на основе кремнийорганических соединений /плотность эмалей 2100-2500 кг/м 3 , термостойкость до 300 °С, предел прочности на сжатие 600 МПа.

– тефлоном /полимер CF 2 =CFCl или фторопласт 3/, плотность 2100-2160 кг/м 3 , термостойкость до 210 °С, предел прочности при растяжении 35-40 МПа.

Б. ^ Силикатные материалы

Данные сведены в таблицу 1.

Таблица 1.

Следует обратить особое внимание на ситаллы – материалы будущего. Ситалл – прозрачный, коррозионно-стойкий материал, по прочности превосходящий обычную углеродистую сталь, а по плотности гораздо легче ее /на уровне алюминия/. В последнее время из ситалла изготовляют аппаратуру /включая трубопроводы/ для цеха по переработке молока, ректификационные колонны /пока небольшой производительности/ и др.

В. ^ Полимерные материалы


  1. Фторопласт 4 – полимер тетрафторэтилена, плотность 2160-2260 кг/м 3 , предел прочности при растяжении 14-25 MПa, предельная температура 327 °С /трубы, арматура, прокладки и др./.

  2. Фторкаучук /условное название резины, содержащей фторкаучук и до 30% мас. наполнителя – кремнекислота, вулканизация проводится с применением диаминов/ – плотность 1800-1900 кг/м 3 , предел прочности на растяжение 20-25 МПа, предельная температура 200-250 °С /шланги, ленты, прокладки и др./.

Г. ^ Другие материалы

В этой рубрике следует отметить материалы, которые не являются конструкционными для промышленности, но очень широко используются в артельных производствах /виноделие, квашение и др./, а также для изготовления бытовой утвари.


  1. Дерево – плотность сырой древесины 300-900 кг/м 3 , предел прочности на сжатие: пихта – 47, дуб – 65 МПа; термостойкость до 150 °C, температура вспышки /при внесении огня/ 230-260 °С, температура самовоспламенения: /нагревание без огня/ около 400 °С.
В настоящее время примерно треть земной суши покрыта лесами, но только 11% лесного покрова Земли можно назвать лесными угодьями, т.е. используются. Человек научился обрабатывать древесину более 10 тыс. лет назад. На Руси испокон веков были развиты ремесла по обработке дерева /чаны, бочки, кадки, посуда и др./. Некоторые ремесла дошли до наших дней и вышли на уровень искусства, например, производство деревянной посуды с яркой лаковой росписью /Хохлома/, которая имеет большой спрос, особенно у иностранцев.

  1. Керамика /фаянс/ – обожженная смесь гончарной глины, кварцевого песка, полевого шпата и др., покрытая глазурью. Температура обжига 1250-1300 °С, плотность 1800-1900 кг/м 3 , предел прочности при сжатии 100-130 МПа.
Археологические раскопки у села Триполье Киевской области показали, что по крайней мере 6 тыс. лет назад человек знал гончарное ремесло. Изготовлялись: кувшины, вазы, чаши, посуда, плитки и др. В настоящее время производство фаянсовых изделий /посуда, сантехника, плитка и др./ осуществляется на промышленной основе.

^ РАСЧЕТ НА ПРОЧНОСТЬ

Для аппаратов, работающих под внутренним избыточным давлением, должен быть представлен расчет на прочность по формуле Госгортехнадзора. Толщина стенки аппарата:

мм /8/

Где D в – внутренний диаметр аппарата, мм,

P – расчетное давление, МПа /1,03-1,1 от номинального/,

φ – поправочный коэффициент прочности сварного шва /1,0-0,8/,

С – прибавка на коррозию, мм,

σ доп – допустимое напряжение, МПа.

Для аппаратов, расположенных на открытом воздухе, проводится расчет на ветровую нагрузку. Скорость ветра принимается 45 м/с /скорость урагана 33 м/с/. Для вращающихся барабанов, имеющих две опоры, осуществляется расчет на изгиб. Для решеток, работающих под нагрузкой, представляется расчет на срез.

^ ЭРГОНОМИКА, ЭСТЕТИЧЕСКИЕ ТРЕБОВАНИЯ

Эргономика – наука, занимающаяся изучением взаимной адаптации человека и машины. Эргономические показатели отражают взаимодей-ствие человека с техникой в комплексе гигиенических, антропометрических, физиологических и психологических свойств человека.

Эргономика непосредственно связана с техникой безопасности, собственно, вышла из нее. При выборе вариантов аппаратуры, например, нужно предусматривать ограждения вращающихся деталей, удобство фор-мы и расположение рукояток управления, небольшие усилия для приведения их в действие. Между аппаратами должны быть достаточные проходы для удобства обслуживания и ремонта. Если аппараты располагаются на откры-том воздухе /выпаривание, ректификация/, то рабочее место оператора должно быть организовано рядом в помещении. Освещенность, температура и влажность воздуха на рабочем месте должны соответствовать стандарту /кондиционер/. Рабочее место должно быть защищено от запыленности, шума, вибрации, излучения, действия вредных веществ, иметь запасной выход для срочной эвакуации. Персонал снабжается спецодеждой /каска, куртка, брюки, сапоги, рукавицы, очки и др./, питьевой водой /допус-каются чай и кофе/, горячим душем и т.д.

Эстетические показатели характеризуют информационную выразитель-ность, рациональность формы, целостность композиции, совершенство исполнения аппаратов и машин. Немаловажное значение имеет цветовое оформление аппаратов и рабочего места.

По технике безопасности принимается следующая окраска трубопро-водов:

Водяной пар – красный,

Вода очищенная – зеленый,

Пожарный трубопровод – оранжевый,

Техническая вода – черный.

^ ЭКОЛОГИЧЕСКИЕ ТРЕБОВАНИЯ

Экология – отношение организмов между собой и с окружающей средой.

Экологические показатели – это уровень вредных воздействий на окружающую среду, которые возникают при эксплуатации оборудования, например, содержание вредных примесей, вероятность выбросов вредных частиц, газов, излучений и др.

В условиях платности природных ресурсов возникает и платность за загрязнение окружающей среды. В зависимости от величины загрязне-ния взимаются платежи за сбросы загрязняющих веществ. Величина пла-тежей устанавливается на основании проекта норм предельно допустимых сбросов /ПДС/ и выбросов /ПДВ/.

Интегральный показатель выбросов


/9/

К – коэффициент выполнения нормативов,

А – коэффициент значимости,

Р б – базовые показатели,

P i – фактическое значение показателей ПДВ и ПДС.

При K i < 1 наблюдается низкий уровень работы предприятия и оно должно быть остановлено.

Зоологическая экспертиза проекта установки, цеха или предприятия проводится по Закону РФ "0б охране окружающей природной среды". Экспертиза проводится Министерством охраны окружающей среды, Минздравом, Санэпиднадзором.

Проект должен обеспечивать улавливание, утилизацию, обезвреживание вредных веществ и отходов, либо полное исключение выбросов загрязняющих веществ.

^ МАСШТАБНЫЙ ПЕРЕХОД И МОДЕЛИРОВАНИЕ

Различают три основных вида моделирования процессов:

1/ физическое,

2/ математическое,

3/ элементное.

1/ ^ Физическое моделирование

По этому методу исследование процесса с обработкой опытных данных последовательно проводят на физических моделях: лабораторная /стекло, емкость до 1 л/, пилотная /металл, до 100 л/, полупромышлен-ная /до 0,5 м 3 /, промышленная /5 м 3 и более/. Метод очень громоздкий и длительный, но обеспечивает надежные результаты.

Физическое моделирование основано на теории подобия.

Определение. Явлениями, подобными друг другу, называются системы тел,

А/ геометрически подобные друг другу;

Б/ в которых протекают процессы одинаковой природы;

В/ в которых одноименные величины, характеризующие явления, относятся между собой как постоянные числа

X´ = a x · x´´ /10/

Где a x – константа подобия.

Сам по себе принцип "подобия" был известен человечеству в глу-бокой древности /наглядный пример – египетские пирамиды/. Однако теория подобия сформировалась только в 20 веке. Основу теории сос-тавляют три теоремы.

/Брайнес Я.M. Подобие и моделирование в химической и нефтехимической технологии. – М.: Гостоптехиздат, 1961. – 220 с./

^ 1-я теорема. Жозеф Бертран, французский математик, 1848 г.

– У подобных явлений индикаторы подобия равны единице или критерии подобия численно одинаковы.

/Индикатор подобия – комплекс констант подобия, критерий подобия – безразмерный комплекс величин/.

^ 2-я теорема. Т.А. Афанасьева-Эренфест, 1925 г., отеч. математик.

– Система уравнений, буквенно одинаковая для группы подобных явлений, может быть преобразована в критериальное уравнение.

^ 3-я теорема. М.В. Кирпичев, А.А. Гухман, 1930 г., отеч. ученые.

– Для подобных явлений критерии подобия, составленные из условий однозначности, численно одинаковы.

^ Условия однозначности включают:

а/ геометрические размеры системы;

Б/ физические константы веществ;

В/ характеристика начального состояния системы;

Г/ состояние системы на ее границах /граничное условие/.

Таким образом, применение теории подобия к исследованию и раз-работке процесса состоит в следующем.


  1. Составление полного математического описания процесса, т.е. вывод дифференциального уравнения и постановка условий однозначности.

  2. Проведение подобного преобразования дифференциального уравнения и условий однозначности, определение критериев подобия и об-щего вида критериального уравнения /метод анализа уравнений /.

  3. Определение опытным путем на моделях конкретного вида критериального уравнения /физическое моделирование/.

Для сложных процессов, когда невозможно пока составить дифферен-циальное уравнение, критерии подобия получают на основе метода ана-лиза размерностей величин, влияющих на процесс /теоремы Бертрана и Букингэма/. Таким методом были, например, получены критерии меха-нического перемешивания.

Различают геометрическое, гидродинамическое, тепловое, диффузионное и химическое подобие.

^ Геометрическое подобие учитывается симплексами "Г", например, отношение длины трубопровода к диаметру.

Гидродинамическое подобие изучается в курсе гидравлики на примере подобного преобразования уравнения Навье-Стокса. Тепловое и диффузионное подобия рассматриваются в дисциплине ПАПП.

Вспомним критериальное уравнение гидродинамики:

где
– критерий гомохронности, учитывает неустановившееся движение жидкости;

– критерий Фруда, учитывает силы тяжести;

– критерий Эйлера, учитывает силы гидростатического давления;

– критерий Рейнольдса, учитывает силы внутреннего трения.

2/ ^ Математическое моделирование

Методы теории подобия применяются и при использовании других видов моделирования, в которых моделирующие процессы отличаются от моделируемых по физической природе. Важнейшим из них является математическое моделирование , при котором различные процессы воспро-изводятся на электрических моделях – электронных вычислительных машинах /ЭВМ/.

По Р. Фрэнксу общая схема математического моделирования включает семь стадий /Фрэнкс Р. Математическое моделирование в химической технологии. – М.: Химия, 1971. – 272 с./.


  1. Постановка задачи.

  2. Определение фундаментальных законов, которым подчиняется механизм явлений, лежащих в основе проблемы.

  3. На основе выбранной физической модели применительно к реша-емой задаче записывается система соответствующих математических уравнений.

  4. Проводится естественное расположение уравнений с помощью
    построения блочной поточно-информационной диаграммы. Диаграмма
    отражает схему связей отдельных стадий технологического процесса.

  5. Выбирается один из нескольких возможных способов решения системы уравнений /модели/, например, логический, аналитический, численный с применением ЭВМ.

  6. Решение /анализ модели/.

  7. Изучение и подтверждение результатов, полученных при решении математической модели /проверка адекватности модели/.

Математическое моделирование гораздо дешевле физического моде-лирования, позволяет решать вопросы автоматического регулирования и оптимизации процессов, исследовать процесс при неполном математи-ческом описании /кибернетическая задача/.

3/ ^ Элементное моделирование

При этом моделировании процесс исследуется на элементарной ячейке промышленного аппарата, а сам аппарат принимается затем состоящим из сотен и тысяч таких ячеек. Например, исследуется теп-лообмен на одной трубке аппарата, а теплообменник будет состоять из 1000 таких труб. Метод применяется для процессов фильтрования, теплообмена, каталитического крекинга и др., позволяет в кратчайшие сроки перевести лабораторные данные в промышленность.

^ ГИДРОМЕХАНИЧЕСКИЕ ПРОЦЕССЫ

В пищевых производствах многие процессы приводят к образованию неоднородных смесей, которые в дальнейшем подлежат разделению /кристаллизация, сушка и др./.

Часто встречается задача противоположного характера: из веществ, находящихся в различных агрегатных состояниях, оказывается необходимым получить смесь /смешение, перемешивание/.

Решение как первой, так и второй задачи относится к области гидромеханических процессов.

Классификация

В гидромеханических процессах применяются неоднородные системы. Последние по меньшей мере состоят из двух фаз:

А/ внутренней или дисперсной фазы, находящейся в тонко раздробленном состоянии;

Б/ внешней фазы или дисперсионной среды, окружающей частицы внутренней дисперсной фазы.

Различают системы.


  1. Газ – твердое тело: а/ пыль, диаметр частиц 5-50 мкм,
б/ дым, 0,3-0,5 мкм.

/Для сравнения: размер космической пыли 0,1–1 мкм/.


  1. Газ – жидкость: а/ туман 0,3–3 мкм; б/ пена.

  2. Жидкость – твердое тело: а/ грубые суспензии, > 100 мкм,
б/ тонкие суспензии, 100-0,1 мкм,

В/ коллоидные растворы, < 0,1 мкм.


  1. Жидкость – жидкость; а/ эмульсии.
По классификации гидромеханических процессов не существует единого мнения. Однако большинство авторов склоняется к следующей классификации.

1/ Разделение газовых неоднородных систем.

2/ Разделение жидких неоднородных систем.

3/ Псевдоожижение.

4/ Перемешивание.

Во всех гидромеханических процессах имеет место движение частиц в газовой или жидкой среде. Изучение закономерностей этого движения составляет важную задачу гидродинамики. Некоторые общие понятия и закономерности движения частиц рассматриваются ниже.

^ Движение тел в жидкостях

Определяющий размер

За определяющий размер твердой частицы произвольной формы принимается эквивалентный диаметр шаровой частицы, имеющей ту же массу /М/ и объем /V/.

/12/

Где – плотность твердой частицы, кг/м 3 .

Режимы обтекания

Для оценки режима обтекания твердой частицы внешним потоком применяют число Рейнольдса:

/13/

Где
– плотность и вязкость среды.

Различают области.


  1. Ламинарное обтекание, Re < 2 /0,1 по другим данным/.

  2. Переходная область, 2 /0,1/ < Re < 500.

  3. Турбулентное обтекание, Re > 500.

Осаждение частиц в поле силы тяжести

При осаждении частицы в неподвижной среде через короткий промежуток времени /от секунды до долей секунды/ устанавливается равновесие сил и движение частицы становится равномерным.

– Скорость равномерного движения частицы при балансе сил, действующих на нее, называется скоростью осаждения .

В идеальном случае действие сил на одиночную частицу шаровой формы при осаждении в неподвижной среде представлено на рис. 1.

Механическое оборудование предприятий пищевой
промышленности относится к классу технологических машин.
Механическое оборудование предназначено для выполнения
технологических операций по первичной переработке пищевых
продуктов с целью изменения их свойств (структуры, формы,
размеров и т.п.)

Классификация механического оборудования

Технологическая машина представляет собой
устройство, состоящее из источника движения, передаточного
механизма, исполнительного механизма и вспомогательных
элементов, объединенных в единое целое станиной или корпусом.
К вспомогательным элементам технологической машины относятся
узлы управления, регулирования, устройства, обеспечивающие
безопасность работы обслуживающего персонала, загрузочные и
разгрузочные устройства и т.п.
корпус
Пульт упр.
М
П.м.
И.м
.
Станина

Классификация механического оборудования

Механическое оборудование предприятий пищевой
промышленности можно классифицировать:
по
по
по
по
функциональному назначению;
количеству выполняемых операций;
структуре рабочего цикла;
степени автоматизации и др.

Классификация механического оборудования

По функциональному назначению:
сортировочно-калибровочное;
моющее;
очистительное;
измельчительно-режущее;
месильно-перемешивающее;
дозировочно-формовочное;
прессующее.

Классификация механического оборудования

Сортировочное оборудование применяется для сортировки,
калибровки и просеивания сыпучих продуктов, овощей, фруктов и
пр.
Моечное оборудование – для мытья овощей и другого сырья.
Очистительное оборудование – для очистки корнеклубнеплодов,
рыбы.
Измельчительно-режущее оборудование – для размалывания,
дробления, протирания, разрезания пищевых продуктов.
Месильно-перемешивающее оборудование – для замеса теста,
перемешивания фаршей, взбивания кондитерских смесей и т.п.
Дозировочно-формовочное оборудование – для формовки котлет,
деления масла на порции, раскатки теста и т.п.
Прессующее оборудование – механизмы для получения сока из
фруктов и ягод, производства макаронных изделий и пр.

Классификация механического оборудования

По количеству выполняемых операций:
Однооперационные – выполняющие одну технологическую
операцию (картофелечистка - очистка картофеля от кожуры).
Многооперационные – выполняющие технологический процесс,
состоящий из нескольких технологических операций
(посудомоечная машина – мытье посуды горячей водой с
раствором моющего средства, предварительное ополаскивание,
окончательное ополаскивание, стерилизация).
Многоцелевые – выполняющие несколько технологических
процессов с помощью поочередно подсоединяемых сменных
исполнительных механизмов (универсальные кухонные машины
со сменными рабочими органами).

Классификация механического оборудования

По структуре рабочего цикла:
Машины периодического действия, в которых загрузку, обработку и
выгрузку продукта осуществляют поочередно, т.е. приступать к
обработке следующей порции продукта можно только после того,
как из рабочей камеры будет выгружен ранее обработанный
продукт. (картофелеочистительные, тестомесильные, взбивальные
машины и др.)
Машины непрерывного действия, в которых процессы загрузки,
обработки и выгрузки продукта в установившемся режиме
совпадают по времени, т.е. продукт непрерывно продвигается от
загрузочного устройства в рабочую камеру, перемещается вдоль нее
и одновременно подвергается воздействию рабочих органов, после
чего удаляется через разгрузочное устройство, т.е. новые порции
продукта подаются в машину до окончания обработки предыдущих и
соответственно сокращется время ее работы (мясорубки,
овощерезки, протирочные машины, просеиватели и др.)

Классификация механического оборудования

По степени автоматизации технологических процессов,
выполняемых машиной:
Машины неавтоматического действия. В них технологические
операции (подача продуктов в рабочую камеру, удаление из нее
готовой продукции, контроль за готовностью продуктов)
выполняет оператор, обслуживающий машину.
Машины полуавтоматического действия. Основные
технологические операции осуществляются машиной, ручными
остаются только вспомогательные операции (например, загрузка и
выгрузка продуктов).
Машины автоматического действия. Все технологические и
вспомогательные операции выполняются машинами. Такие
машины можно использовать в технологическом процессе
автономно или в составе поточных линий.

10. Производительность, мощность и КПД машины

Производительность технологической
машины – это ее способность перерабатывать
определенное количество продукции в единицу
времени (кг/ч, шт./с, м³/ч, т/сут. и т.д.).

11. Производительность, мощность и КПД машины

Теоретическая производительность (Qт) – это
количество продукции, которое машина может
выпускать в единицу времени при бесперебойной и
непрерывной работе в стационарном режиме.
Б
Е
Q Б z
,
Т
Т P ТT
где Б – количество продукции, выпускаемое машиной за один рабочий
цикл (кг, шт., т и пр.);
z – количество рабочих циклов за единицу времени;
Тр – рабочий цикл машины (ч, с, сут. и пр.);
Е – вместимость рабочей камеры (м³);
Тт – технологический цикл машины (ч, с, сут. и пр.)
(Тт=tз+tо+tв, где tз – время загрузки, tо - время
обработки, tв – время выгрузки продукции из машины).

12. Производительность, мощность и КПД машины

Технологическим циклом машины называют
время пребывания обрабатываемого объекта в
технологической машине, в течение которого он
проходит обработку от начального состояния до
конечного согласно технологии данного процесса.
Рабочим циклом машины называют промежуток
времени между двумя последовательными моментами
выхода единиц готовой продукции.

13. Производительность, мощность и КПД машины

Техническая (действительная)
производительность (Qтех.) - это среднее
количество продукции, которое выпускает машина в
течение единицы времени в условиях эксплуатации в
соответствии с требованиям технологического
процесса. Техническая и технологическая
производительность связаны соотношением:
QТЕХ. К Т. И.QТ
где Кт.и. – коэффициент технического использования машины;

14. Производительность, мощность и КПД машины

Коэффициент технического использования машины:
КТ.И.
Т МАШ.
Т МАШ. Т Т.О. Т ОТК.
где Тмаш. - время эффективной работы машины в стационарном
режиме (ч.);
Тт.о. – время, необходимое для технического обслуживания и ввода
машины в стационарный режим (потери первого рода) (ч.);
Тотк. – время, необходимое на восстановление работоспособности
машины и ввод ее в стационарный режим после отказа
(потери второго рода) (ч.).

15. Производительность, мощность и КПД машины

Эксплуатационная производительность (Qэкс.)
– это производительность машины, эксплуатируемой на
данном предприятии, с учетом всех потерь рабочего
времени.
QЭКС. К О. И.QТ
где Ко.и. – коэффициент общего использования машины, учитывающий все
потери машинного времени (в т.ч. простои машины по
организационным причинам), рассчитать точно невозможно.

16. Производительность, мощность и КПД машины

Мощность машины – это энергия, которая
подводится к машине в единицу времени и
характеризует быстроту совершения работы.
Мощность двигателя должна восполнять потери
ее в самом двигателе, в передаточном механизме, на
рабочем валу, передающем движение рабочим
органам, и быть достаточной для того, чтобы рабочий
орган производил работу с заданной скоростью.

17. Производительность, мощность и КПД машины

Общая мощность, которую необходимо передать на
входной вал исполнительного механизма,
определяется с учетом потерь в самом механизме и
передачах:
,

PД PТР
,
где Рд – мощность, затрачиваемая на приведение в движение
рабочего органа;
Ртр – мощность, затрачиваемая на перемещение
обрабатываемого объекта;
- КПД, учитывающий потери мощности при ее передаче от
вала двигателя к рабочему органу.

18. Производительность, мощность и КПД машины

При поступательном движении рабочего органа:
PД FР.О. Р.О.
PТР FО. О.
где Fр.о. – усилие, приложенное к рабочему органу, Н;
р.о. - линейная скорости движения рабочего органа, м/с;
Fо. - усилие, приложенные к обрабатываемому объекту, Н;
о - линейная скорость движения обрабатываемого объекта
под действием рабочего органа, м/с;

19. Производительность, мощность и КПД машины

При вращательном движении:
PД М Р.О. Р.О.
PТР М О. О.
где Мр.о. - вращающий момент, приложенный к рабочему органу, Н м;
р.о. - угловая скорость движения рабочего органа, рад/с;
Мо. - вращающий момент, приложенный к обрабатываемому объекту, Н м;
о
- угловая скорости движения обрабатываемого объекта под
действием рабочего органа, рад/с.

20. Производительность, мощность и КПД машины

Если электродвигатель выбран недостаточной мощности в
сравнении с предполагаемой нагрузкой, это приведет к
неполному использованию машины (аппарата) или
перегрузке отдельных частей электродвигателя и
преждевременному выходу его из строя.
Если мощность электродвигателя будет превышать
предполагаемую нагрузку, технико-экономические
показатели машины снизятся (увеличится первоначальная
стоимость электропривода, уменьшится КПД и т.д.).

21. Производительность, мощность и КПД машины

КПД технологической машины (аппарата)
– это отношение полезной работы (полезно
затраченной энергии) ко всей совершаемой работе
(затраченной энергии).
Следовательно,
коэффициент
полезного
действия характеризует величину потерь и величину
полезно затраченной энергии и является одним из
критериев степени совершенства преобразования
электрической (тепловой и др.) энергии в
механическую и обратно.

22. Производительность, мощность и КПД машины

Потери энергии в машинах и аппаратах
происходят:
в технологическом процессе;
при работе механизмов на холостом ходу;
при наличии сил трения в кинематических парах;
в результате рассеивания энергии при
деформации и вибрации деталей и машин;
при выбросах в окружающую среду и т.д.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА

КОЛЛЕДЖ СЕРВИСА И ДИЗАЙНА

«Оборудование предприятий общественного питания»

для специальностей 260502.51

«Технология продукции общественного питания»,

050501.52 профессиональное обучение специализация

«Технология продукции общественного питания»

Владивосток 2008

Лекция №6. Машины для приготовления теста и кремов

Лекция №7. Весоизмерительное оборудование

Лекция №8. Контрольно-кассовые машины

Лекция №9. Основы теплотехники. Теплогенерирующие устройства

Лекция №10. Варочное оборудование

Лекция №11. Жарочно-пекарное оборудование

Лекция №12. Варочно-жарочное и водогрейное оборудование. Плиты электрические

Лекция №13. Оборудование для раздачи пищи. Мармиты

Лекция №14. Основы холодильной техники. Компрессоры

Лекция №15. Торговое холодильное оборудование. Камеры и шкафы

холодильные

Лекция №16. Охрана труда. Правовые основы охраны труда

Список литературы

Лекция №1. Введение. Классификация оборудования

На современном этапе общественное питание будет занимать преобладающее место по сравнению с питанием в домашних условиях. В связи с этим возникает необходимость дальнейшей механизации и автоматизации производственных процессов, как основного фактора роста производительности труда. Отечественная промышленность создает большое количество различных машин для нужд предприятий общественного питания. Ежегодно осваиваются и внедряются новые, более современные машины и оборудование, обеспечивающие механизацию и автоматизацию трудоемких процессов на производстве.

Создаются и осваиваются новые машины, оборудование, которые будут работать в автоматическом режиме без участия человека.

В настоящее время одной из важнейших задач в стране является радикальная реформа по ускорению научно-технического прогресса в народном хозяйстве.

В общественном питании она стоит особенно остро, на предприятиях до сих пор преобладающее большинство производственных процессов выполняется вручную. Существуют много видов работы, где занято большое количество работников малоквалифицированного труда. Поэтому коренная перестройка в этой сфере производства предполагает необходимость широкой индустриализации производственных процессов, массового внедрения промышленных методов приготовления и поставки продукции потребителям.

Подобная организация производства в общественном питании позволит не только применять новое высокопроизводительное оборудование, но и более эффективно его использовать. В выигрыше будут и потребители, -- сокращаются затраты времени, повышается культура обслуживания, и работники общественного питания -- за счет механизации и автоматизации производства резко снижаются затраты ручного труда, увеличивается производительность производства продукции и улучшаются санитарно-технические условия.

Внедрение новой техники и прогрессивной организации производства дает возможность существенно поднять экономическую эффективность работы предприятий общественного питания за счет повышения производительности труда, сокращения расходов сырья и энергии.

Научно-технический прогресс в общественном питании заключается не только в развитии и совершенствовании используемых орудий труда, в создании новых более эффективных технических средств, но и немыслим без соответствующего совершенствования технологии и организации производства, внедрения новых методов труда и управления.

Совершенствование техники должно обеспечивать не только рост производительности труда и его облегчение, но и снижение затрат труда на единицу продукции при использовании новых машин и механизмов. Иначе говоря, новая техника только в том случае будет эффективной, если затраты общественного труда на ее создание и использование требуют меньше труда, сберегаемого применением этой новой техники. В снижении затрат на единицу продукции, производимую с помощью новой техники, в конечном счете и заключается экономическая суть совершенствования машин и механизмов.

Для ускорения темпов НТП в общественном питании большое значение имеет совершенствование тепловых аппаратов, позволяющих интенсифицировать процессы тепловой обработки сырья за счет применения новых способов нагрева, автоматического поддержания заданных режимов, программирования теплового процесса.

В производстве теплового оборудования в нашей стране в течение последних двадцати лет происходили коренные изменения, которые можно назвать технологической перестройкой. В ней можно выделить три периода. Первый состоял в переходе от использования оборудования, работающего на твердом топливе, к газовому и электрическому оборудованию. На втором произошел переход от универсального оборудования (например, кухонная плита) к секционному, каждый вид которого предназначен для выполнения отдельных операций тепловой обработки продуктов. Третий период происходит в настоящее время. Он заключается в производстве и внедрении оборудования, использующего новые методы тепловой обработки продуктов, сухим паром или методом конвективного обогрева.

Для развития теплового оборудования наиболее перспективным направлением является создание новых аппаратов:

С новыми видами тепловой обработки продуктов (комбинированный нагрев, обработка продуктов сухим паром и конвективным обогревом);

С автоматическим регулированием и программированием теплового процесса;

С непрерывным действием для варки и жарки продуктов (трансферавтоматы);

С устройствами и приспособлениями, механизирующими процессы переворачивания и перемешивания продуктов (пищеварочные котлы с механической мешалкой).

Унификация и стандартизация технологического оборудования позволяют сократить значительно его номенклатуру и снизить материалоемкость и создают также реальные предпосылки для уменьшения трудоемкости выпускаемой продукции.

Для повышения технического уровня предприятий общественного питания, роста производительности труда и улучшения организации обслуживания населения, важное значение имеет совершенствование раздаточного оборудования, внедрение высокопроизводительных конвейерных линий для комплектования и реализации комплексных обедов. Новым направлением улучшения раздаточного оборудования является создание линий прилавков самообслуживания, включающих передвижные мармиты, прилавки, шкафы и другие виды раздаточного оборудования, отвечающего санитарно-техническим и экологическим нормативам.

Совершенствование технологических процессов в общественном питании будет эффективным только в том случае, если, их внедрение осуществляется на новой технической основе. При этом новая техника должна создаваться по трем направлениям. Основным является разработка и освоение техники, отвечающей современному уровню развития науки. Постоянно должна проводиться работа по созданию принципиально новых видов техники. Наряду с этим следует уделять большое внимание и модернизации действующего технологического оборудования.

Важным средством ускорения научно-технического прогресса в общественном питании является своевременная модернизация оборудования, замена морально устаревшей техники на современную, не уступающую по качеству, надежности, металлоемкости и энергоемкости лучшим достижениям науки.

Невысокая эффективность внедрения новой техники зачастую связана с несовершенством конструктивных решений отдельных видов машин. Еще недостаточно высоки качество и надежность используемого оборудования.

Таким образом, перед разработчиком и создателем новой техники ставится задача значительно улучшить вес важнейшие технико-экономические параметры машин, оборудования и различных механизмов в общественном питании:

Создание машин и аппаратов, работающих на основе электрофизических методов тепловой обработки пищевых продуктов (инфракрасные лучи и сверхвысокочастотный нагрев и их использование с традиционными методами);

Разработка средств комплексной механизации и автоматизации производственных процессов для специализированных и узкоспециализированных предприятий общественного питания (блинных, пельменных, пирожковых и т.д.);

Повышение качества выпускаемого оборудования -- надежности, долговечности и ремонтопригодности, и имеющие стандартные унифицированные узлы и детали.

Создание высокопроизводительных универсальных машин и механизмов, удобных для использования их как в индивидуальном виде, а так же в составе механизированных или автоматизированных поточных линий.

Решение этих задач позволит интенсифицировать производственные процессы на предприятиях общественного питания, значительно улучшить качество выпускаемой продукции и снизить ее себестоимость.

Дальнейшее расширение сети предприятий общественного питания и увеличение их технической оснащенности требует от обслуживающего персонала повышения технической грамотности, специальных знаний и повышения квалификации.

Классификация машин

В зависимости от назначения и вида обрабатываемых продуктов, машины предприятий общественного питания можно подразделить на несколько групп.

1. Машины для обработки овощей и картофеля -- очистительные, сортировочные, моечные, резательные, протирочные и т.д.

2. Машины для обработки мяса и рыбы -- мясорубки, фаршемешалки, рыхлители мяса, котлетоформовочные и др.

3. Машины для обработки муки и тоста -- просеиватели, тестомесительные, взбивальные и т.д.

4. Машины для нарезки хлеба и гастрономических продуктов - хлеборезка, колбасорезка, маслоделители и т.д.

5. Универсальные приводы -- с комплектом сменных исполнительных машин.

6. Машины для мытья подовой посуды и приборов.

7. Подъемно-транспортные машины.

Машина состоит из трех основных механизмов: двигательного, передаточного и исполнительного, а также механизмов управления, регулирования, защиты и блокировки.

Двигательными механизмами являются главным образом электродвигатели переменного тока с короткозамкнутым ротором (закрытые, асинхронные, трехфазные или однофазные). Для работы в вагонах-ресторанах и на судах используются электродвигатели постоянного тока.

Передаточный механизм служит для осуществления взаимосвязи двигательного и исполнительного механизмов. В совокупности двигательный и передаточный механизмы называют приводом машин.

Исполнительный механизм определяет назначение и наименование машин. Конструкция его зависит от структуры рабочего цикла и характера технологического процесса, а также вида и физико-механических свойств продукта, подвергаемого обработке: В состав исполнительного механизма входят рабочая камера с загрузочным и разгрузочным устройствами, а также инструменты для механической обработки продуктов.

С помощью механизмов управления осуществляются пуск, останов и контроль за работой машины. Механизмы регулирования предназначены для настройки машины, а механизмы защиты и блокировки -- для предохранения машины от поломки и аварийного ее отключения.

Все машины, применяемые на предприятиях торговли и общественного питания, можно классифицировать по структуре рабочего цикла, степени механизации и автоматизации процессов и по функциональному признаку.

По структуре рабочего цикла различают машины, периодического и непрерывного действия. В машинах и механизмах периодического действия продукт обрабатывается в течение определенного времени, называемого временем обработки, а затем удаляется из рабочей камеры. После загрузки новой порции продукта процесс повторяется. В машинах непрерывного действия процессы загрузки, обработки и выгрузки продукта происходят одновременно и непрерывно.

По степени механизации и автоматизации различают машины неавтоматические, полуавтоматические и автоматические. В машинах неавтоматического действия загрузка, выгрузка, контроль и вспомогательные технологические операции выполняются оператором. В машинах полуавтоматического действия основные технологические операции выполняются машиной; ручными остаются только транспортные, контрольные и некоторые вспомогательные процессы. В машинах автоматического действия все технологические и вспомогательные процессы выполняются машиной.

По функциональному признаку машины и механизмы предприятий торговли и общественного питания подразделяются на ряд групп, обусловленных их назначением: машины для разделения сыпучих пищевых продуктов; машины для мытья овощей и столовой посуды; машины для очистки продуктов от наружных покровов; машины для измельчения продуктов; машины для перемешивания продуктов; машины, обрабатывающие продукты давлением; весоизмерительные устройства и контрольно-кассовые машины; подъемно-транспортное оборудование.

Лекция №2. Общие сведения о машинах и механизмах

Машина -- это совокупность механизмов, выполняющих определенную работу или преобразующих один вид энергии в другой. В зависимости от назначения различают машины -- двигатели и рабочие машины.

В зависимости от назначения рабочие машины могут выполнять определенную работу по изменению формы, размеров, свойств и состояния объектов труда. Объектами труда в предприятиях общественного питания служат пищевые продукты, подвергающиеся различной технологической обработке -- очистке, измельчению, взбиванию, перемешиванию, формированию и т.д.

По степени автоматизации и механизации выполняемых технологических процессов различают машины неавтоматические, полуавтоматические, автоматические. В машинах неавтоматического действия загрузка, выгрузка, контроль и вспомогательные технологические операции выполняются поваром, закрепленным за данной машиной. В машинах полуавтоматического действия основные технологические операции выполняются машиной, ручные остаются только транспортные, контрольные и некоторые вспомогательные процессы. В машинах автоматического действия вес технологические и вспомогательные процессы выполняются машиной. Они используются в составе поточных и поточно-механизированных линий и полностью заменяют труд человека.

Основные требования предъявляемые к машинам и механизмам.

Машины и механизмы должны удовлетворять требованиям прогрессивной технологии обработки сырья и продуктов.

Для этого необходимо, чтобы конструктивные, кинематические и гидравлические параметры оборудования обеспечивали оптимальные режимы технологических процессов и высокие технико-экономические показатели. Такими параметрами являются: удельная энергоемкость, удельная металлоемкость, удельная материалоемкость, удельный расход воды, занимаемая оборудованием площадь и др., т. е. параметры машины, отнесенные к единице производительности.

Конструкция должна обеспечивать высокую надежность и долговечность машины, быструю замену изношенных и неисправных рабочих органов, инструментов, узлов и деталей. Конструкция должна быть технологичной, т. е. в процессе изготовления и эксплуатации машины затрачиваются минимальные средства. Необходимо, чтобы машины и механизмы отвечали требованиям техники безопасности Й производственной санитарии (машины заземляют; рабочие органы, инструменты и элементы передачи закрывают кожухами, крышками, предохранительными кольцами, облицовками или заключают в корпуса; в конструкцию многих машин включают различные блокировочные устройства и элементы, обеспечивающие отключение их при поднятых ограждениях).

Выпускаемые машины все в большей степени должны отвечать требованиям производственной эстетики. Правильные пропорции машин, простота их формы, удобное расположение элементов управления, загрузочных и разгрузочных устройств, приятная окраска способствуют повышению производительности труда и созданию безопасных условий работы.

При создании современных машин и механизмов стремятся к стандартизации и унификации узлов, деталей и комплектующих изделий, что позволяет сократить номенклатуру запасных частей и облегчить выполнение ремонтных работ.

Рабочие органы и инструменты машин и механизмов должны обладать высокой износоустойчивостью. Быстровращающиеся узлы и детали машин должны быть уравновешены, чтобы исключить износ подшипников, валов и корпусных деталей.

Материалы, применяемые при изготовлении машин и механизмов.

Детали, входящие в состав машин, испытывают различные нагрузки, что учитывается при выборе материалов. На детали корпусов (станины, стойки и др.) приходится до 75% массы всех деталей машины, и хотя они испытывают незначительные нагрузки, детали должны отвечать требованиям прочности и жесткости. Детали корпусов выполняют литыми из серого чугуна или алюминия и сварными из углеродистой стали марок СтЗ и Ст5. Использование сварных конструкций крышек и кожухов дает большую экономию металлов. Для уменьшения массы переносных машин и механизмов детали их корпусов изготовляют из сплавов алюминия методом литья или литья под давлением. В отдельных случаях детали корпусов могут быть изготовлены из армированных пластмасс или стеклопластиков.

Валы, шестерни, тяги, оси, пальцы испытывают наибольшие нагрузки. Материалами для их изготовления служат углеродистые и нержавеющие стали. Чаще всего применяют стали марок 45, 50, 40Х, 65Г, 15, 20Х и др.

Шестерни, шкивы, зубчатые колеса, маховики изготовляют из чугуна, стали, сплавов алюминия, а также из пластмасс, текстолита, пластиков, капрона и др.

Ножи и решетки мясорубок изготовляют из инструментальной стали, а также высокохромистого чугуна марки Х28. Материалы, которые используют для производства инструментов и рабочих камер, не должны подвергаться коррозии в результате соприкосновения с продуктами, кроме того, они должны легко очищаться от остатков продукта и не разрушаться под влиянием моющих средств.

Выбор марки и способа термообработки материала определяется расчетом его на прочность или жесткость с учетом технологических, эксплуатационных и экономических требований.

Маркировка машин и механизмов.

В настоящее время маркировку машин и механизмов производят по отраслевой инструкции, которая устанавливает единый порядок обозначений, обязательный для всех организаций и предприятий торговли и общественного питания.

В основу обозначений положена смешанная буквенно-цифровая система.

Левая часть обозначения -- буквенная -- состоит из трех-четырех букв. Первая буква соответствует наименованию изделия (П --привод, М --машина и др.), вторая --назначению изделия (У -- универсальный, О -- очистительный, К -- комбинированный, В -- взбивальный, Т -- тестомесильный, М --моечный, И -- измельчительный), третья буква соответствует наименованию вида энергии или основному технологическому процессу (Э -- электрический, О -- овощной, М -- мясной, В -- вибрационный) и т. д.

Правая часть обозначения -- цифровая--: служит показателем основного параметра изделия (производительность, вместимость рабочей камеры и др.) и отделяется от левой части при помощи дефиса. Основные параметры изделий указывают по верхнему (максимальному) пределу. Если машина выпускается в модернизированном варианте, после основного ее параметра проставляется шифр, обозначающий модернизацию (М, Ml, М2 и т. д.).

Примеры маркировки машин: МОК-250 --машина для очистки картофеля и корнеклубнеплодов производительностью 250 кг/ч; ММУ-1000-- машина моечная универсальная производительностью 1000 тарелок/ч; МИМ-500 -- машина для измельчения мяса производительностью 500 кг/ч.

Лекция №3. Детали машин. Электроприводы

Основные части и детали машин

Современные машины состоят из большого числа деталей различного назначения. Соединяясь между собой, детали образуют узлы. Основными узлами любой машины, используемой в предприятиях общественного питания, являются: станина, корпус, рабочая камера, рабочие органы, передаточный механизм и двигатель.

Станина -- служит для установки и монтажа всех узлов машины. Изготавливается она обычно литой или сварной и имеет отверстия для закрепления машины на рабочем месте. Корпус машины -- предназначен для размещения внутренних частей машины -- рабочей камеры, передаточного механизма и т.д. Иногда станина и корпус изготавливаются как одно целое.

Рабочая камера -- место в машине, где продукт обрабатывается рабочими органами.

Рабочие органы -- это узлы и детали машин, непосредственно воздействующие на продукты питания в процессе их обработки.

Передаточный механизм -- передает движение от вала двигателя к рабочему органу машины, одновременно обеспечивая требуемые скорость и направление движения. Как правило в качестве двигателя машины используется электродвигатель

Понятие о передачах

Передачей называется механическое устройство, передающее вращательное движение от вала электродвигателя к валу рабочих органов. Одновременно передачи позволяют изменять скорость вращения вала, направление движения на противоположное и преобразовывать один вид движения в другой.

В механических передачах вал с закупленными на нем деталями, передающими вращение, называется ведущим, а вал с деталями вращения - ведомым.

Все механические передачи можно разделить на ременные, зубчатые, червячные, цепные и фрикционные.

Зубчатые передачи это механизм, состоящий из 2-х зубчатых колес, сцепленных между собой. Эти передачи получили широкое применение в передаточных механизмах машин.

В зависимости от конструкции и расположения зубчатых колес, зубчатые передачи подразделяются на цилиндрические, конические и планетарные. По способу зацепления зубьев, зубчатые передачи делятся на передачи с внешним и внутренним зацеплением.

В зависимости от расположения зубьев, колеса подразделяются на плоскозубые, косозубые и шевронные. Для передачи сложного вращательного движения используется планетарный зубчатый механизм (рис. 1-2пап), при котором одно зубчатое колесо неподвижно, другое совершает двойное вращение: вокруг своей оси и вокруг оси неподвижного колеса (взбивальная машина).

Ременная передача -- осуществляется при помощи двух шкивов, закрепленных на ведущем и ведомом валах, и надетого на эти шкивы ремня. Вращение от одного вала к другому передается посредством трения, возникшего между шкивом и ремнем.

Ремень в поперечном сечении может иметь форму прямоугольника -- плоско ременная передача, трапеции -- клиноременная передача, круга -- круглоременная передача. Ремни выполняются из кожи или хлопчатобумажной и прорезиненной ткани. Нормальная работа зависит от правильного натяжения ремня. Ременная передача бесшумна в работе, проста по конструкции и предохраняет машину от поломки в случае заклинивания, так как ремень будет пробуксовывать. На предприятиях общественного питания широкое применение получила клиноременная передача, применяемая в картофелечистках, мясорубках, холодильных агрегатах и т.д.

Червячная передача применяется для передачи движения между валами с пересекающимися осями. Состоит она из винта со специальной резьбой (червяк) и зубчатого колеса с зубьями соответствующей формы. Эти передачи компактны, бесшумны и значительно снижают скорость вращения вала.

Цепная передачи состоит из 2-х закрепляемых на валах звездочек и шарнирной гибкой цепи, которая надевается на звездочки и служит для их связи. Эти передачи применяются в механизмах и машинах при больших расстояниях между валами и параллельном расположении их осей. Цепные передачи обеспечивают постоянное передаточное отношение и по сравнению с ременной передачей позволяют передавать большие мощности, кроме того, одной цепью можно приводить в движение нескольких валов. К недостаткам цепной передачи можно отнести высокую стоимость обслуживания, сложность изготовления и шума в процессе работы.

Фрикционная передача состоит из 2-х катков, насаженных на валы и прижатых один к другому. Вращение от ведущего катка перелается ведомому за счет силы трения.

При передаче вращения между параллельными валами применяются цилиндрические передачи, между пересекающимися валами -- конические.

Эти передачи просты по конструкции, бесшумны в работе и самопредохраняются от перегрузок, однако имеют некоторые недостатки: низкий КПД - 80-90%, непостоянное передаточное число и повышенный износ катков.

Кривошипно-шатунный механизм предназначен для преобразования вращательного движения в возвратно-поступательное движение рабочего инструмента. Он состоит из коленчатого вала, шатуна и поршня. При вращении коленчатого вала, шатун вставляет поршень перемещаться возвратно-поступательно. Этот механизм применяется в компрессорах холодильного оборудования.

Понятие об электроприводах

Электроприводом называется машинное устройство, используемое для приведения в движение машины. Он состоит из электрического двигателя, передаточного механизма и пульта управления. На предприятиях общественного питания наибольшее распространение имеют двигатели, рассчитанные на напряжение 380/220 В. Это значит, что один и тот же двигатель может работать от сети переменного тока с частотой 50 Гц и с напряжением 380 или 220 В, следует только правильно соединить обмотки его статора. Соединяя их "треугольником", двигатель подключают к сети напряжением 220 В, соединяя звездой, к сети напряжением 380 В.

Широкое применение получили универсальные приводы, которые могут поочередно приводить в движение различные устанавливаемые сменные рабочие механизмы -- фаршемешалка, мясорубка, взбивали и т.д. Применение универсальных приводов в стоповых очень выгодно. Объясняется это тем, что сменные рабочие машины работают в столовых не более часа и поэтому имеют очень малый коэффициент использования. В таких случаях устанавливать электропривод к каждой машине нецелесообразно из-за увеличения ее стоимости и занимаемой плошали. В настоящее время промышленность выпускает универсальные приводы 2-х видов: общего назначения, которые используются в нескольких цехах, и специального назначения, которые используются только в одном цехе, например, в мясном. К универсальным привалам общего назначения относятся и универсальные малогабаритные приводы УММ-ПР с электродвигателем переменного тока, УММ-ПС с электродвигателем постоянного тока, которые используют на транспорте (судах и вагонах-ресторанах). Все универсальные приводы имеют буквенные обозначения. Первая буква П обозначает привод, вторая - название цеха: М -- мясной, X -- холодный, Г -- горячий, У -- универсальный, для холодного цеха ПХ-0,6, для горячего цеха ПГ-0,6 и для мясного цеха ПМ-1,1. На приводы общего назначения: ПУ-0,6 и П-11 устанавливаются сменные механизмы, которые имеют буквенные обозначения: первая буква М -- механизм сменный, вторая М -- мясорубка, В -- механизм взбивальный, О -- механизм овощерезательный.

Универсальные приводы

На предприятиях обществе иного питания наряду с машинами предназначенными для выполнения одной какой-либо операции применяются универсальные приводы с набором сменных механизмов, выполняющих целый ряд операций по обработке продуктов.

Универсальные приводы используют преимущественно в небольших предприятиях общественного питания, в мясных, овощных и кондитерских цехах.

Универсальным приводом называется устройство состоящее из электродвигателя с редуктором и имеющее приспособление для переменного подсоединения различных сменных механизмов. Он состоит из электродвигателя с редуктором, на котором могут закрепляться и попеременно работать различные по назначению съемные механизмы: мясорубка, взбивалка, овощерезка, мясорыхлитель и другие машины. Отсюда привод получил свое название - "универсальный".

Применение универсальных приводов значительно увеличивает производительность труда, снижает капитальные затраты, увеличивает коэффициент полезного действия оборудования и т.д.

В настоящее время промышленность выпускает универсальные приводы П-11 и ПУ-0.6 для различных цехов, а также приводы специального назначения П-1,1 для сравнительно небольшого ассортимента продукта.

Для работы в небольших столовых, а также в камбузах речных и морских судов используются универсальные малогабаритные привады УММ-ПС иди УММ-ПР. Источником энергии этих приводов макет быть переменный (ПР) или постоянный (ПС) ток.

Универсальный привод общего назначения ПУ-0,6 выпускается двухскоростным с частотой вращения вала 170 и 1400 об/мин и односкоростным с частотой вращения 170 об/мин и мощностью двигателя 0,6 кВт. Он имеет комплект сменных механизмов (табл. 1), которые могут использоваться на небольших предприятиях, где отсутствует цеховое.деление приготовления продушин.

На больших предприятиях общественного питания, где имеется цеховое деление, используют специализированные универсальные приводы:

Привод ПМ-1.1 специализированный для мясо-рыбного цеха выпускается в односкоростном или двухскоростном варианте, с частотой вращения вала 170 или 1400 об/мин и мощностью двигателя 1,1 кВт. Он имеет комплект сменных исполнительных механизмов, которые могут быть использованы только в мясо-рыбных цехах предприятий.

Привод ПХ-0,6 специализированный для холодных цехов. Состоит из односкоростного привода П-0,6 и комплекта сменных исполнительных механизмов, которые могут быть использованы в холодных цехах.

Привод ПГ-0,6 специализированный для горячих цехов, состоит из полноскоростного привода П-0,6 и комплекта сменных исполнительных механизмов, которые могут быть использованы в горячих цехах.

Привод П-П универсальный состоит из двухступенчатого зубчатого редуктора, двухскоростного двигателя. Частота вращения приводного вала привода составляет ПО и 330 об/мин. На горловине привода расположена рукоятка с кулачком для крепления сменных исполнительных механизмов. Переключатель скоростей электродвигателя, пусковая кнопка и кнопка возврата гешевого реле смонтированы на пульте управления.

Все выпускаемые приводы и сменные механизмы к ним имеют буквенные и цифровые обозначения.

Буква П - обозначает слово привод, У - универсальный, М - мясной цех, X - холодный цех, Г -- горячий цех. Цифры, следующие за буквенными обозначениями, указывают на номинальную мощность электродвигателя привода в киловаттах.

Сменные механизмы (МО. комплектуемые к универсальному или специализированным приводам, имеют определенный порядковый номер.

Номер 2 -- мясорубка, 3 -- соковыжималка, 4 -- взбивалка, 5 -- картофелечистка, 6 - мороженница, 7 - протирочный механизм, 8 - фаршемешалка, 9 -- куттер, 10 -- овощерезка, 11 -- тележка или подставка для привода, 12 - размолочный механизм, 13 -- приспособление для чистки ножей и вилок, 14 -- колбасорезка, 15 - косторезка, 16 -- точило, 17 -- рыбоочиститель, IS -- механизм для фигурной нарезки овощей, 19 -- рыхлитель мяса, 20 - механизм для взбивания, 21 - котлетоформовочный механизм, 22 - механизм для нарезки вареных овощей, 24 - просеиватель, 25 -- механизм для перемешивания салатов и винегретов, 27 - механизм для нарезки свежих овощей, 28 -- механизм для нарезки сырых овощей брусочками.

Цифра, следующая за порядковым номером механизма показывает величину средней производительности. Кроме того, некоторые сменные механизмы обозначаются двумя или более цифрами. Например, МС-4-7-8-20. Это обозначение свидетельствует о многоцелевом назначении механизма: 4 -- взбивать продую-, 7 -- протирать продукт, 8 - перемешивать фарш, 20 -- емкость бачка.

Правила эксплуатации и техники безопасности универсальных приводов

Подготовку к работе универсального привода проводит повар, закрепленный за данной машиной, который перед началом работы обязан выполнить требования техники безопасности и соблюдать при работе с машиной безопасность труда.

Вот поэтому перед началом работы проверяется правильность установки универсального привода, исправность сменного механизма и правильность его сборки и крепления с помощью винтов-зажимов. При установке корпуса сменного механизма в горловине привода контролируют» чтобы конец рабочего вала механизма попал в гнездо привода вала редуктора универсального привода. Проверяется наличие ограждающих устройств, заземления или зануления.

Убедившись в исправности сменного механизма и привода, производят пробный пуск па холостом ходу. Привод должен работать с небольшим шумом. В случае неисправности привод останавливают и устраняют причину неисправности. Регулировать скорость вращения в процессе работы разрешается только при наличие вариатора в конструкции машин.

Приготовленные продукты загружать в сменные механизмы нужно только после включения универсального привода, исключение составляет только взбивальный механизм, у которого сначала загружают в бачок продукты, а затем включают универсальный привод.

При работе запрещается перегружать сменный механизм продуктами, так как это приводит к ухудшению качества или порче продуктов, а так же к поломке машины. Особое внимание нужно уделить строгому соблюдению правил безопасности при работе с универсальным приводом, т.к. неосторожность приводит к травмам обслуживающего персонала.

Осмотр универсального привода и установленного сменного механизма, а так же устранение неполадок разрешается проводить только после выключения электродвигателя универсального привода и его полной остановки.

После окончания работы универсальный привод выключают и отключают от электросети. Только потом можно снимать сменный механизм для разборки, промывки и сушки.

Профилактический и текущий ремонт универсального привода и сменных механизмов проводят специальные работники согласно заключенного договора.

Лекция №4. Машины для обработки овощей

Общие сведения.

На предприятиях существует несколько способов очистки овощей от кожуры: щелочной, паровой, комбинированный, термический и механический. При щелочном способе картофель и другие овощи предварительно нагревают в воде, а затем обрабатывают щелочным раствором, нагретым до 100 0С, который размягчает поверхностный слой клубней. Затем в барабанной моечной машине клубни очищаются от наружного слоя и отмываются от щелочи. При паровом способе картофель обрабатывают паром под давлением 0,6 0,7 МПа в течение 1-2 мин, затем поступает в роликовую моечно-очистительную машину, где размягченный слой с клубней снимается. При комбинированном способе картофель вначале обрабатывается 10% раствором каустической соды при температуре 75-80 0С в течение 5-6 минут, затем паром в течение 1-2 минут. После этого картофель поступает в моечные машины обычно барабанного типа.

При термическом способе овощи обжигают в цилиндрической печи с вращающимся цилиндрическим ротором и достигают глубину провара не более 1,5 мм. Затем овощи очищаются в моечно-очистительной машине. Продолжительность термической обработки для лука 3-4 сек, для моркови 5-7 сек, для картофеля 10-12 сек. Еще один способ очистки - механический.

Оборудование для измельчения и нарезки овощей.

Овощерезательные машины бывают: дисковые, роторные, пуансонные и комбинированные.

Машина настольного типа МРО-200 используется для нарезки сырых овощей кружочками, ломтиками, соломкой, брусочками. Привод машины состоит из электродвигателя и клиноременной передачи. Рабочая камера выполнена в виде цилиндра с окнами для загрузки овощей. В комплект машины входит дисковый нож, два терочных диска и два комбинированных ножа. Дисковый нож используется для нарезки овощей ломтиками и шинкования капусты, комбинированные - овощей брусочками сечением 3 х 3 и 10 х 10 мм.

Классификация.

Машины для измельчения сырья условно можно разделить на две группы: машины, обеспечивающие грубое измельчение сырья и машины, обеспечивающие тонкое измельчение. Современные машины для грубого измельчения бывают: валковые, ножевые, молотковые, дробилки - гребнеотделители для винограда, дробилки - семяотделители для томатов. Машины для резки сырья существуют с неподвижными ножами, с вращающимися дисковыми ножами; комбинированные машины для резки овощей брусочками. Для тонкого измельчения сырья и отделения семян применяются протирочные машины, а также гомогенизаторы, коллоидные мельницы, дезинтеграторы, микронор, куттер и др.

Овощерезка

Имеет два горизонтальных вала, вращающихся в противоположных направлениях . Вал 1 вращает барабан, во внутреннюю полость которого поступает сырье. Вал 2 приводит во вращение дисковые ножи, число оборотов которых в пять раз больше числа оборотов барабана. Сырье, поступившее в барабан, под действием центробежной силы отбрасывается лопастью к неподвижному цилиндрическому корпусу и подводится под воздействие дисковых ножей и неподвижного плоского ножа. Форма лопасти обеспечивает заклинивание продукта во время резки. Поэтому сырье разрезается в двух плоскостях на брусочки и по желобу выводится из машины. В той же корнерезке после модернизации основным усовершенствованием является применение устройства, которое сообщает плоскому ножу колебательное движение в плоскости, перпендикулярной режущей кромке, улучшающее качество резки.

Производительность машины может быть определена по формуле:

где n - число оборотов барабана в минуту; D - диаметр кожуха, в котором находится барабан, в м; h - высота среза продукта горизонтальным ножом; ? - ширина лопасти барабана, м; р - объемная масса продукта, кг/м3; ? - коэффициент использования режущего инструмента (? = 0,3 ?= 0,4).

Машина для резки баклажанов и кабачков кружками отрезает концы плодов вместе с плодоножкой и соцветием и разрезает их на кружки набором дисковых ножей; толщина кружков определяется дистанционными шайбами , .

Протирочные машины

Протирание - это не только процесс измельчения, но и разделения, т.е. отделения массы плодоовощного сырья от косточек, семян и кожуры на ситах с диаметром ячеек 0,8-5,0 мм. Финиширование - это дополнительное измельчение протертой массы пропусканием через сито диаметром отверстий 0,4-0,6 мм.

Основные конструкции протирочных машин различаются по взаимодействию сита и бичевых устройств. В основу положены следующие признаки: сетчатый барабан неподвижен, движутся бичи, «инверсивные» протирочные машины, в которых движется сито, а бичи неподвижные, и безбичевые. В них сито совершает сложное вращательное движение вокруг собственной оси и планетарно. По количеству ступеней: одноступенчатые, двухступенчатые, трехступенчатые, две сдвоенные машины. По конструкции сита: коническое и цилиндрическое; секционные и по диаметрам отверстий. По конструкции бичевых устройств: плоские; проволочные и др. По загрузочным устройствам: шнековые, в сочетании с лопастным устройством, загрузки по трубе.

Одноступенчатая протирочная машина состоит из станины, приводного вала, укрепленного в 2-х подшипниках со шнеком, лопастью и бичевым устройством, загрузочного бункера и привода с клиноременной передачей.

Работа машины основана на силовом воздействии бичей на обрабатываемый продукт, продавливая его через сито и за счет центробежной силы. Рабочая машина также регулируется изменением угла между осью вала и бичами, изменением зазора между ситом и бичами и диаметром отверстий сит. Протертая масса выводится через поддоны, а отходы из цилиндра выводятся через лоток.

Лекция №5. Машины для обработки мяса и рыбы

Классификация

Для обработки мяса и рыбы применяются машины: мясорубки, мясорыхлители, фаршемешалки, рыбоочистительные и рыборазделочные машины, котлетоформовочные, набивочные и разливочные машины, для нарезки гастрономических товаров, костерезки.

Машины для обработки мяса.

Мясорубки

Мясорубки и волчки предназначены для грубого измельчения сырья.

На предприятиях широкое распространение получили мясорубки МИМ-82 производительностью 250 кг/ч и МИМ-105 производительностью 400 кг/ч , .

Мясорубка МИМ-82 является настольной машиной, состоящей из корпуса, камеры обработки, загрузочного устройства, шнека, рабочих органов, приводного механизма. Рабочая камера машины на внутренней поверхности имеет винтовые нарезы, которые улучшают подачу мяса и исключают вращение его вместе со шнеком. На верхний части корпуса находится загрузочное устройство с предохранительным кольцом, исключающее возможность доступа рук к шнеку, и толкатель.

Мясорубка комплектуется тремя решетками с отверстиями 3, 5, 9 мм, подрезной решеткой и двумя двухсторонними ножами.

В собранном виде ножи и решетки плотно прижаты друг к другу с помощью упорного кольца и нажимной гайки.

Внутри рабочей камеры находится шнек с переменным шагом витков, который уменьшается в сторону режущего механизма. Благодаря такой конструкции однозаходного червяка-рабочего шнека - продукт уплотняется, что облегчает его резку ножами и продавливание сквозь решетки. В собранном виде ножи и решетки плотно прижаты друг к другу с помощью упорного кольца и нажимной гайки. Шнек служит для захватывания мяса и подачи его к ножам и решеткам. Установленные решетки остаются в рабочей камере неподвижными, а ножи вращаются вместе со шнеком.

Первой устанавливается подрезная решетка, которая имеет три перемычки с заостренными кромками наружу. Вторым устанавливается двухсторонний нож, режущими кромками против часовой стрелки. Третьей устанавливается крупная решетка любой стороной. Далее устанавливают второй двухсторонний нож, мелкую решетку, упорное кольцо и нажимную гайку. Диаметр решеток мясорубок 82; 105; 120; 160; 200 мм. Рабочие органы: ножи и решетки МИМ-105 аналогичны рабочим органам МИМ-82, только диаметр рабочей камеры (диаметр решетки) на 23 мм больше.

В волчке 632-М производительностью 400 кг/ч камерой обработки служит цилиндрическая полость корпуса с направляющими ребрами и бороздками, улучшающими подачу продукта. Кроме того, они препятствуют прокручиванию продукта вместе с рабочим шнеком.

Принцип действия мясорубок (волчков) одинаковый. Продукт, попадая в зону резания, т.е. между вращающимися крестовидными ножами и неподвижными решетками измельчается до степени, соответствующей диаметру отверстий последней решетки.

Волчок МП-160 производительностью 3000 кг/ч диаметром режущего механизма 160 мм отличается от 632-М наличием в камере обработки двух параллельных шнеков: приемного и рабочего.

Волчок К6-ФВЗП-200 имеет производительность 4500 кг/ч и диаметр режущего механизма 200 мм.

Фаршемешалки и машины для рыхления мяса

К машинам и механизмам мясного цеха относятся: мясорыхлитель МРМ-15 производительностью 1800 шт/ч, механизмы для рыхления мяса МРП11-1 (1500 шт/ч) и МС19-140 (1400 шт/ч); механизм для рыхления мяса для бефстроганов МБП11-1 (100 шт/ч); фаршемешалка МС8-150 и МВП11-1 (150 кг/ч); размолочный механизм МС 12-15 и механизм для измельчения хрупких продуктов МИП 11-1 (15 кг/ч); рыбоочистительная машина РО-1М и костерезка.

Фаршемешалки предназначены для перемешивания фарша и его компонентов в однородную массу и насыщения ее воздухом.

Фаршемешалка МС-150 состоит из алюминиевого цилиндрического корпуса, отлитого заодно с загрузочным бункером. Внутрь рабочей камеры вставляется вал, на котором находятся лопасти, установленные по углом 3000. При вращении рабочего вала лопасти равномерно перемешивают фарш с компонентами.

В фаршесмесителе ФММ-300 месильное корыто емкостью 300 л имеет тепловую рубашку для подогрева продукта при его перемешивании. Внутри корыта расположены рабочие органы в виде двух Z-образных винтовых лопастей, которые вращаются с различными скоростями (67 и 57 об/мин) навстречу друг другу.

В фаршесмесителе с отъемной дежой в процессе работы дежа непрерывно вращается вокруг оси нижнего червячного колеса, а кулачковая мешалка также вращается и обеспечивает равномерное перемешивание продукта.

Двухлопастные фаршесмесители с опрокидывающейся дежой емкостью 340 и 650 л состоят из двух месильных лопастей, вращающихся навстречу одна другой с различными скоростями (47,6 и 37,4 об/мин) и двух приводов, первый из которых приводит в движение месильные лопасти, а второй - опрокидывает дежу.

Мясорыхлительная машина МРМ-15 предназначена для рыхления поверхности ромштексов, шницелей и т.д. перед их обжаркой . Рабочими органами мясорыхлителя служат дисковые ножи-фрезы с дистанционными шайбами между ними, расположенные на валах и вращающиеся при работе один навстречу другому.

В каретке установлены также две гребенки между фрезами, которые предохраняют от наматывания мяса на фрезы. Кусок мяса, проходя между фрезами, надрезается с двух сторон зубьями, при этом происходит разрушение волокон и увеличение поверхности.

Машины для обработки рыбы.

Рыбоочистительные и рыборазделочные машины

Машина РО-1М , предназначена для очистки рыбы от чешуи. Рабочий инструмент рыбоочистительной машины, скребок, изготовлен из ножевой нержавеющей стали в виде фрезы с продольными бороздками, заостренными с одной стороны.

Для защиты от случайного прикосновения рук и разбрасывания чешуи вращающийся скребок имеет защитный кожух. Скребок приводится в движение посредством гибкого вала, состоящего из резинового шланга, внутри которого находится стальной трос.

Существует оборудование для сортирования рыбы, для ориентации и загрузки рыб и рыборазделочные машины.

Если для сортирования рыбы используют сита, то это процесс механический. Сито является рабочим органом машины и представляет собой плоскость, выполненную из проволок, нитей, пластин, а также подвижных и неподвижных стержней.

Технические способы частичной ориентации рыбы различны. Наибольшее распространение получили наклонная, и особенно широко распространенная колеблющаяся плоскость.

Частичное ориентирование рыбы, когда все они после ориентации располагаются головой вперед, достаточно для загрузки в нанизочные машины, например, в линии «Шпроты в масле». Для загрузки и работы рыборазделочных машин нужна полная ориентация рыб. Например, все рыбы, расположенные головой вперед, должны лежать на спине или, наоборот, спиной вверх и, наконец, упираться рылом в какую-то планку.

При разработке конструкций рыборазделочных машин необходимо в будущем:

1) Сократить номенклатуру названий за счет универсальности.

2) Повысить производительность за счет механизации загрузки рыбы в кассеты рыборазделочных машин.

Для этого необходима универсальная машина для разделки средних рыб.

Универсальная маш...........

Страницы: | | | |

Основными задачами перерабатывающей промышленност и Российской Федерации являются комплексная переработка сельскохозяйственного сырья, увеличение объемов вырабатываемой продукции, повышение ее качества, а также расширение ассортимента.
Решение указанных задач на крупных перерабатывающих предприятиях возможно при условии эксплуатации современного высокотехнологичного оборудования.

В перерабатывающих производствах применяются самые разнообразные виды оборудования и техники.

Классификация оборудования перерабатывающих производств осуществляется по следующим признакам:

По характеру воздействия на обрабатываемый продукт;
структуре рабочего цикла;
степени механизации и автоматизации;
принципу сочетания в производственном потоке;
функциональному признаку.
Кроме перечисленных признаков каждому виду оборудования присущи специфические признаки.

В зависимости от характера воздействия на обрабатываемый продукт технологическое оборудование подразделяется на аппараты и машины. В аппаратах осуществляются тепло-, массообменные, физико-химические, биохимические и другие процессы, в результате которых происходит изменение физических, химических свойств и агрегатного состояния обрабатываемого продукта. Характерным признаком аппарата является наличие реакционного пространства или камеры.
В машинах осуществляется механическое воздействие на продукт, в результате чего изменяются его форма и размеры. Конструктивная особенность машин - наличие движущихся исполнительных (рабочих) органов. В некоторых случаях технологическое оборудование является комбинацией машины и аппарата, поскольку в нем одновременно осуществляются механическое, физико-химическое и тепловое воздействия.
По структуре рабочего цикла оборудование может быть периодического, полунепрерывного и непрерывного действия. В оборудовании периодического действия продукт подвергается воздействию в течение определенного времени, после которого он выгружается.
В оборудовании полунепрерывного (циклического) действия загрузка продукта и воздействие на него осуществляются непрерывно в течение всего рабочего цикла, а выгрузка - через определенные промежутки времени.
В оборудовании непрерывного действия загрузка, обработка и выгрузка продукта осуществляются одновременно.
В процессе работы технологическое оборудование выполняет не только основные (измельчение, перемешивание, варка и т.п.), но и вспомогательные (загрузка, перемещение, контроль, выгрузка и т.п.) операции. В зависимости от степени механизации и автоматизации этих операций оборудование бывает неавтоматическое, полуавтоматическое и автоматическое. В неавтоматическом {простом) оборудовании вспомогательные, а также часть основных операций выполняются вручную.
В полуавтоматическом оборудовании все технологические и большинство вспомогательных операций выполняются без участия рабочего. Ручными остаются транспортные и контрольные операции, пуск и останов машины.
В автоматическом оборудовании все основные и вспомогательные операции выполняются оборудованием без участия человека. Частным случаем оборудования автоматического действия являются кибернетические машины (роботы).
По принципу сочетания технологического оборудования в производственном потоке различают отдельные единицы (выполняют одну операцию); агрегаты или комплексы (выполняют последовательно различные операции); комбинированные (выполняют законченный цикл операций) и поточные автоматические системы (выполняют все технологические операции в непрерывном потоке).
Одним из признаков, на основе которого возможна классификация оборудования, является общность функций, выполняемых им в процессе переработки сырья или полуфабрикатов. По этому признаку выделяют следующие укрупненные группы и подгруппы оборудования (табл. 1.):

1. Оборудование для подготовки сырья к переработке:
1.1) для очистки и сортировки;
1.2) мойки и увлажнения;
1.3) шелушения зерна.

2. Оборудование для механической обработки разделением:
2.1) для дробления и измельчения;
2.2) разделения продуктов измельчения зерна;
2.3) выделения из жидких гетерогенных систем взвешенных твердых и коллоидных частиц;
2.4) отделения жидкой фазы.

3. Оборудование для механической обработки соединением:
3.1) для перемешивания в целях получения жидких, сыпучих, тестообразных полуфабрикатов и готовых продуктов;
3.2) формования путем выдавливания, штампования.

4. Оборудование для проведения тепломассообменных процесс:
4.1) для проведения тепловых процессов;
4.2) проведения массообменных процессов;
4.3) сушки и обезвоживания;
4.4) разваривания и варки;
4.5) выпечки и обжарки;
4.6) охлаждения и замораживания.

5. Оборудование для проведения микробиологических процессов:
5.1) для солодоращения;
5.2) получения биомассы;
5.3) получения вторичных метаболитов.
6. Оборудование для выполнения финишных операций:
6.1) для санитарной обработки тары;
6.2) дозирования и укупоривания;
6.3) инспекции и этикетирования.
Приведенная классификация в большей мере относится к оборудованию пищевых производств и в недостаточной мере характеризует отдельные группы оборудования для переработки сельскохозяйственной продукции. Объясняется это тем, что в целом ряде технологических процессов по переработке сельскохозяйственного сырья применяется оборудование, которое по назначению, устройству и принципу действия очень специфично и требует для своей классификации отдельного подхода. Примером может служить оборудование для предубойного обездвиживания животных, убоя животных и птицы, сбора крови, съема шкур, поэтому оборудование для переработки сельскохозяйственной продукции удобнее классифицировать в зависимости от выполняемого технологического процесса.
Исходя из этого принципа оборудование для переработки сельскохозяйственной продукции подразделяется на:
1) оборудование для переработки продукции растениеводства;
2) оборудование для переработки продукции животноводства.
В свою очередь, вторая группа подразделяется на оборудование для переработки мяса и оборудование для переработки молока. Оборудование для переработки мяса включает в себя следующие группы:
линия убоя скота и птицы;
оборудование для первичной обработки туш свиней;
обработки продуктов убоя скота и птицы;
механической обработки мясного сырья;
тепловой обработки мясного сырья;
упаковывания мяса и мясных продуктов.
При более детальной классификации, например, оборудования для механической обработки мясного сырья оно подразделяется на оборудование для измельчения мяса и шпика, перемешивания мясного сырья, посола мяса и формования мясных продуктов.
Оборудование для переработки молока по общей классификации подразделяется на оборудование:
для транспортирования, приемки и хранения молока;
механической обработки молока;
тепловой обработки молока;
производства сливочного масла;
производства творога;
производства сыра;
производства мороженого;
производства сгущенных молочных продуктов;
производства сухих молочных продуктов;
фасования и упаковывания молока и молочных продуктов.
В качестве примера также можно привести общую классификацию оборудования зерноперерабатывающих предприятий. По функциональному признаку и способу воздействия на продукт оно подразделяется на сепарирующее, весодозирующее, смешивающее, измельчающее, формующее, а также оборудование для гидротермической обработки (ГТО) зерна.

← Вернуться

×
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:
Я уже подписан на сообщество «i-topmodel.ru»