Двигатель из порошка. Проблемы, инновации и новые технологии в цветной металлургии россии Новые технологии в металлургии

Подписаться
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:

История человечества насчитывает не одну тысячу лет. На протяжении всего периода существования нашей расы отмечается стабильный технический прогресс, немаловажную роль в котором сыграло умение человека обращаться с металлом, создавать и добывать его. Поэтому вполне логично, что металлургия - это то, без чего невозможно представить наш быт, нормальное выполнение рабочих обязанностей и многое другое.

Определение

Прежде всего стоит разобраться с тем, как по-научному, с технической точки зрения, называют современную сферу производства.

Итак, металлургия - это раздел науки, техники, который охватывает процесс получения различных металлов из руды или иных материалов, а также все процессы, имеющие связь с трансформацией химического состава, свойств и структуры сплавов.

Структура

На сегодняшний день металлургия - это мощнейшая отрасль промышленности. Кроме того, она - обширное понятие, которое включает в себя:

  • Непосредственное производство металлов.
  • Обработку металлических изделий как в горячем, так и холодном виде.
  • Сварку.
  • Нанесение различных металлических покрытий.
  • Раздел науки - материаловедение. Данное направление в теоретическом изучении физико-химических процессов ориентируется на познание поведения металлов, сплавов и интерметаллидов.

Разновидности

Во всем мире существует две основные отрасли металлургии - черная и цветная. Такая градация сложилась исторически.

Черная металлургия заключается в обработке железа и всех сплавов, в котором оно присутствует. Также эта отрасль подразумевает извлечение из недр земли и последующее обогащение руд , сталелитейное и чугунолитейное производство, прокат заготовок, производство ферросплавов.

К цветной металлургии причисляют работу с рудой любого металла, кроме железа. Кстати, условно делят на две большие группы:

Тяжелые (никель, олово, свинец, медь).

Легкие (титан, магний, алюминий).

Научные решения

Несомненно, что металлургия - это деятельность, требующая внедрения инновационных технологий. В связи с этим многие страны нашей планеты активно ведут исследовательские работы, целью которых является изучение и применение на практике самых разнообразных микроорганизмов, которые помогли бы решить, например, такой злободневный вопрос, как очистка сточных вод, являющихся обязательной составляющей металлургического производства. Помимо этого, уже стали реальностью такие процессы, как биологическое окисление, осаждение, сорбция и прочие.

Разделение по технологическому процессу

Заводы металлургии можно условно причислить к двум основным группам:

Пирометаллургии, где процессы протекают при очень высоких температурах (плавка, обжиг);

Гидрометаллургии, которая заключается в извлечении металлов из руд при помощи воды и прочих водных растворов с использованием химических реактивов.

Принцип выбора места постройки металлургического завода

Для того чтобы понять, на основе каких выводов принимается решение о возведении предприятия в том или ином месте, стоит рассмотреть основные факторы размещения металлургии.

В частности, если вопрос касается дислокации завода цветной металлургии, то здесь на первый план выходят такие критерии, как:

  • Наличие энергоресурсов. Производство, связанное с обработкой легких цветных металлов, требует колоссального количества электрической энергии. Поэтому подобные предприятия возводят максимально близко к гидроэлектростанциям.
  • Требуемое количество сырья. Разумеется, что чем ближе находятся залежи руды, тем, соответственно, лучше.
  • Экологический фактор. К сожалению, страны постсоветского пространства не могут быть отнесены в категорию, где предприятия металлургии являются экологически безопасными.

Таким образом, размещение металлургии - сложнейший вопрос, решению которого следует уделять самое пристальное внимание с учетом всевозможных требований и нюансов.

Для формирования максимально подробной картины в описании обработки металлов важно указать на ключевые участки данного производства.

Предприятия черной металлургииимеют в своем составе несколько так называемых переделов. Среди них: аглодоменный, сталеплавильный, прокатный. Рассмотрим каждый из них детальнее.

Доменное производство

Именно на этом этапе осуществляют освобождение железа непосредственно из руды. Происходит это в доменной печи и при температуре свыше 1000 градусов Цельсия. Таким образом происходит выплавка чугуна. Свойства его будут напрямую зависеть от протекания процесса плавки. Регулируя плавление руды, можно в конечном счете получить один из двух передельный (используют в дальнейшем для производства стали) и литейный (из него отливают чугунные заготовки).

Производство стали

Соединяя железо с углеродом и, при необходимости, с различными легирующими элементами, в итоге получают сталь. Методов ее выплавки достаточно количество. Особо отметим кислородно-конверторный и электроплавильный, которые являются самыми современными и высокопродуктивными.

Конверторная плавка характеризуется своей скоротечностью и получением в итоге стали с требуемым химическим составом. Основу процесса составляет продувка кислородом через фурму, в результате чего чугун окисляется и трансформируется в сталь.

Электросталеплавильный способ - самый эффективный. Именно благодаря использованию дуговых печей можно выплавить самые качественные легированные марки стали. В подобных агрегатах нагрев загруженного в них металла происходит очень быстро, при этом есть возможность добавлять необходимое количество легирующих элементов. Кроме того, получаемая таким методом сталь имеет низкое содержание неметаллических включений, серы и фосфора.

Легирование

Этот процесс заключается в изменении состава стали посредством внедрения в нее рассчитанных концентраций вспомогательных элементов для последующего придания ей определенных свойств. В числе наиболее часто применяемых легирующих компонентов значатся: марганец, титан, кобальт, вольфрам, алюминий.

Прокат

Многие заводы металлургииимеют в своем составе прокатную группу цехов. В них производят как полуфабрикаты, так и уже полностью готовую продукцию. Сущность процесса заключается в пропуске металла в зазоре между вращающимися в противоположных направлениях стана. Причем ключевым моментом является то, что расстояние между валками должно быть меньше, чем толщина пропускаемой заготовки. За счет этого металл втягивается в просвет, перемещается и в итоге деформируется до заданных параметров.

После каждого пропуска зазор между валками делают меньше. Важный момент - зачастую металл недостаточно пластичен в холодном состоянии. И потому для обработки его заранее подогревают до требуемой температуры.

Потребление вторичного сырья

В современных условиях рынок потребления вторсырья как черных, так и цветных металлов неуклонно развивается. Во многом это обусловлено тем, что ресурсы руды, к огромному сожалению, не являются возобновляемыми. Каждый год их добычи существенно снижает запасы. Учитывая тот факт, что потребности в металлопродукции в машиностроении, строительстве, авиастроении, судостроении и прочих отраслях народного хозяйства неуклонно растут, вполне разумным выглядит решение развивать переработку уже отработавших свой ресурс деталей и изделий.

Можно с уверенностью утверждать, что развитие металлургии в некоторой степени объясняется и позитивной динамикой сегмента отрасли - использованием вторичного сырья. При этом переработкой металлолома занимаются и крупные, и мелкие компании.

Мировые тенденции развития металлургии

В последние годы наблюдается чёткое повышение объемов выпуска металлопроката, стали и чугуна. Во многом это объясняется настоящей экспансией Китая, который стал одним из ведущих планетарных игроков на рынке металлургического производства.

При этом различные факторы металлургии позволили Поднебесной отвоевать себе практически 60% всего мирового рынка. Остальную десятку основных производителей составили: Япония (8%), Индия и Соединенные Штаты Америки (6%), Россия и Южная Корея (5%), Германия (3%), Турция, Тайвань, Бразилия (2%).

Если же рассматривать отдельно 2015 год, то наблюдается тенденция снижения активности производителей металлопродукции. Причем самый большой спад отмечен в Украине, где был зафиксирован результат, который на 29,8% ниже прошлогоднего.

Новые технологии в металлургии

Как и любая другая промышленность, металлургия просто немыслима без разработки и внедрения на практике инновационных разработок.

Так, сотрудники Нижегородского государственного университета разработали и начали внедрять в практику новые наноструктурированные износостойкие твердые сплавы, в основе которых лежит карбид вольфрама. Основное направление применения новшества - производство современного металлообрабатывающего инструмента.

Кроме того, в России был модернизирован колосниковый барабан со специальной шаровой насадкой с целью создания новой технологии переработки жидкого шлака. Это мероприятие было выполнено на основе государственного заказа Министерства образования и науки. Такой шаг полностью себя оправдал, поскольку его результаты в итоге превзошли все ожидания.

Крупнейшие предприятия металлургии в мире

  • Arcelor Mittal - компания с главным офисом в Люксембурге. Ее доля составляет 10% всего мирового производства стали. В России компании принадлежат шахты Березовская, Первомайская, Анжерская, а также "Северсталь-групп".
  • Hebei Iron & Steel - гигант из Китая. Он полностью принадлежит государству. Помимо производства, компания занимается добычей сырья, его транспортировкой и проведением научно-исследовательских работ. На заводах компании используются исключительно новые разработки, и самые современые технологические линии что позволило китайцам научиться производить ультратонкие стальные плиты и сверхтонкий холоднокатанный лист.
  • Nippon Steel - представитель Японии. Менеджмент компании, которая начала свою работу еще в 1957 году, стремится к объединению с другим предприятием, именуемым Sumitomo Metal Industries. По мнению экспертов, такое слияние позволит достаточно быстро выйти японцам на первое место в мире, обогнав всех своих конкурентов.

Металлургия сегодня, как и 30 лет назад, делится условно по своему назначению на две группы: первая работает для массового производства, вторая - это спецметаллургия. Соответственно, и материалы делятся на те, к которым не предъявляется особых требований, кроме цены. И на те, для которых очень важны особые характеристики. Одна из главных задач спецматериалов - быть не конструкционными в традиционном понимании, так как их несущая способность не очень важна, а быть частью или основой для ресурсного изделия.

Функциональные характеристики стальных материалов во многом основаны на покрытиях, которые на них нанесены. Они придают материалам новые свойства - жаростойкость и трибологические качества.

Еще одна важная особенность современной металлургии заключается в том, что она должна служить основой для вторичной переработки, то есть необходимо учитывать весь жизненный цикл материалов. Сегодня в качестве сырья используются более сложные и дорогостоящие рудные базы, чем прежде. Поэтому необходимо вовлекать в переработку и иные источники ресурсов, которые прошли восстановление из нетрадиционного сырья, прежде всего вторичного. При этом требования к качеству получаемых из вторсырья материалов остаются очень высокими.

Одной из главных тенденций современной металлургии становится борьба за "чистоту" материала - удаление грубых загрязнений и вредных примесей, исключение появления трещин в процессе эксплуатации. Появившийся в конце 1970-х - начале 1980-х термин "чистая сталь" на какое-то время пропал, а теперь появляется вновь. Но если раньше мы говорили о размерах включения в 20-40 микронов, то сейчас это не более 2-3 микронов, а чаще и нулевой уровень загрязнения. В результате даже традиционные сплавы по своим служебным свойствам становятся новыми.

Классический современный металлический материал обладает двумя основными характеристиками. Во-первых, это конструкционный материал, который предсказуем как по своим свойствам, так и по стоимости, которой можно управлять. Экономические соображения, конечно, говорят о том, что металл своих позиций не сдает.

За последние несколько лет в технологиях обработки металлов произошли две незаметные революции. Одна из них была основана на появлении пятикоординатных станков и твердосплавного инструмента на основе карбида вольфрама. Вторая связана с появлением так называемых аддитивных технологий, основанных на совершенно новых для металлургии принципах. Пятикоординатные станки стали сегодня уже привычными. А вот аддитивные технологии проявят себя в ближайшие три-пять лет.

И это существенно меняет традиционную металлургию. Можно представить, что многие качественные изделия и качественные материалы могут поменять свою форму существования - в основном они будут производиться в виде порошка. И детали будут изготавливаться из них фактически прямым методом. Подтверждением серьезности таких тенденций является и опубликованная несколько дней назад информация о том, что General Electric собирается вложить 1,4 миллиарда долларов в объединение известных компаний, специализирующихся на 3D-печати: шведской Arcam AB и германской SLM Solutions Group AG. Заявленная цель объединения - начать производить изделия для двигателестроения и энергетики на основе 3D-технологий. Нет сомнений, что это сильно встряхнет рынок и даст дополнительный импульс развитию этих технологий.

Ученые разрабатывают материалы, которые могут работать в условиях экстремальных температур

Говоря о новых материалах, нельзя не упомянуть полимеры. Уже давно известно углеволокно: корпус самолета "Боинг 787" полностью сделан из этого материала. В таких изделиях, где требуются одновременно хорошие механические свойства и легкость, конечно, подобные материалы будут заменять металлы, особенно если они эксплуатируются в экстремальных условиях. Но сейчас взаимопроникновение в конструкционных материалах металла и полимера настолько сильное, что уже сложно сказать, что это на самом деле: по толщине это полимер, по свойствам - полимер на металле.

Сегодня индустрия работает по нескольким направлениям. Во-первых, это разработка материалов, которые могут работать в условиях экстремальных температур. Во-вторых, важная работа идет над продлением срока службы материалов, которые могут с гарантией простоять 100 лет. Это актуально, например, для ядерной энергетики. Также многие компании и научные коллективы разрабатывают биосовместимые материалы и особенно композиты, так как мы уже научились сочетать металлы с неметаллами и получать новые прочные материалы. Они требуются современной медицине для производства имплантируемых устройств, протезирования и т.п.

Кстати

Создан материал, не уступающий по прочности металлу, и при этом в 100 раз легче пенополистирола. Материал, известный как "микрорешетка", разработан учеными из HRL Laboratories (США), которая принадлежит Boeing и General Motors. Он на 99,9 процента состоит из воздуха и организован в виде сетки из крошечных полых трубок. Толщина их стенок составляет всего 100 нанометров - в 1000 раз тоньше человеческого волоса. Видео, продемонстрированное разработчиками, показывает, что фрагмент микрорешетки лежит на опушенном одуванчике, не приминая его.

Микрорешетку сделали из хорошо известного металла никель-фосфора, но с необычной архитектурой и с использованием инновационного производственного процесса по принципу 3D-печати. Эта технология имеет большие перспективы в авиастроении, создании космических кораблей и в других сферах производства, где требуются сверхлегкие, но при этом очень прочные материалы. Свойства микрорешетки основаны на тех же принципах, которые позволили создать Эйфелеву башню - сооружение высотой в 324 метра, но при этом невероятно легкое. А Эйфель и его инженеры, как известно, применили в своем шедевре знания того, как устроены кости человека. Современные технологии позволили перевести те же принципы в очень мелкий масштаб.

Мартеновский процесс, долгое время державший монополию в области производства стали, уступил в конце 60-х годов XX века место более производительному кислородно-конвертерному. Дальнейшая борьба шла уже между конвертерным и набирающим силу электросталеплавильным процессом.

Динамика развития процессов производства стали

Растущий спрос на специальные виды сталей и развитие мини-миллов (небольших прокатных заводов, имеющих в составе электропечи) упрочил позиции этого способа производства стали. Развитие основных процессов производства стали с середины XX века представлено на диаграмме:

Доля мартеновского производства по итогам 2008 года в мире составляла 2,2%. Мартеновское производство сосредоточено в основном в странах СНГ (23,4% от общего производства стали по итогам 2008 года). В связи с закрытием избыточных и малоэффективных производств на фоне мирового финансового кризиса доля мартеновского производства по итогам 2009 года значительно сократилась. Так, на российских предприятиях о закрытии мартеновских цехов объявили Череповецкий МК (Северсталь) и Нижнетагильский МК (Евраз). Таким образом, по итогам 2010 года доля мартеновского производства составляла уже 14,3% в странах СНГ и 1,3% - в мире.

Соотношение между конвертерным и электросталеплавильным процессами в общем объеме производства стали в ближайшей перспективе сохранится: с одной стороны растет количество предприятий неполного цикла (мини-миллы) с использованием электрометаллургии, с другой стороны – ведущий мировой производитель стали Китай наращивает производство именно конвертерной стали (доля кислородно-конвертерной стали в КНР по итогам 2010 года составляет 90,2%).

Основные компоненты металлошихты для сталеплавильных процессов

Компонентами металлошихты для производства стали в общем случае являются чугун, лом черных металлов и металлизованное сырье (Direct Reduction Iron – DRI).

Металлошихта для основных сталеплавильных процессов может варьироваться в довольно широком диапазоне и зависит в большинстве случаев от доступности ресурсов и ценовых соотношений между ними. Так, в периоды роста стоимости железорудного сырья и снижения цен на лом чёрных металлов комбинаты увеличивают использование лома за счёт снижения чугуна и наоборот.

Общее представление о технологических диапазонах изменения сталеплавильной шихты можно получить из следующей таблицы:

Кислородно-конвертерное Электростале-плавильное Мартеновское (скрап-рудный процесс) Мартеновское (скрап процесс)

Кислородно-конвертерное

Электростале-плавильное

Мартеновское (скрап-рудный процесс)

Мартеновское (скрап процесс)

Доля процесса в выплавке стали (мир)

6 9,8 %

29,0 %

1,2 %

Доля процесса в выплавке стали (СНГ)

6 4 ,6 %

2 1,1 %

1 4 ,3 %

Типовая шихта, %:

- жидкий чугун

75-80

0-30

25-55

- лом черных металлов

20-25

30-100

25-75

- чугун чушковый

0-5

5-15

- металлизованное сырье

0-70

Максимальная доля лома в металлошихте (технологическое ограничение)

28%

100%

45%

75%

Заменители лома

чугун жидкий*

чугун жидкий*

чугун жидкий*

чугун чушковый

чугун чушковый*

чугун чушковый*

чугун чушковый*

Примечание:

* – ограниченное применение

Наибольшая вариативность металлошихты наблюдается в электросталеплавильном производстве. Источником тепла в ЭСП является энергия электрической дуги и необходимость в других теплоносителях отсутствует, что снимает потребность в приходе тепла от компонентов шихты.

Как уже говорилось выше, мартеновский процесс ввиду его незначительной доли в мировом производстве не играет значительной роли в потреблении металлосырья. Таким образом, в общем виде схема классического производства стали выглядит следующим образом:

Преимущества классической схемы:

  • высокая степень извлечения железа;
  • высокая удельная производительность;
  • высокий тепловой КПД;
  • эффективный расход энергоресурсов.

Недостатки классической схемы:

  • высокие стартовые капитальные затраты при строительстве нового производства;
  • необходимость предварительного окускования шихты;
  • использование кокса в качестве основного энергоносителя и восстановителя;
  • ограниченные ресурсы качественного лома черных металлов.

Новые процессы получения железа

Основные причины возникновения новых процессов получения железа вытекают из недостатков классической схемы: стремление сократить технологическую цепочку и снизить зависимость от использования кокса – основного восстановителя и источника тепла в классической схеме производства стали. Как следствие – в обозначении новых процессов часто используются термины «прямое получение железа» и «бескоксовая металлургия».

По виду производимого полупродукта новые процессы получения железа разделяют на твердофазные и жидкофазные. Доля последних крайне мала (5-6% от всей бескоксовой металлургии) и их полупродукт не может выступать в составе металлошихты в качестве полновесной альтернативы лому.

Исходным сырьём для новых процессов являются железная руда или железорудные окатыши. Таким образом, стадия восстановления (перевод железа из окисленной формы в металлическую) также присутствует и в процессах альтернативной металлургии.

В качестве восстановителя в твердофазных процессах используют продукты конверсии (перевода в CO и H2) природного газа или продукты газификации углей. Вследствие относительно низкой эффективности применение газификации углей ограничено. В последнее время процессы, связанные с газификацией углей, наиболее активно развиваются в Индии.

В жидкофазных процессах основным восстановителем и источником тепла является уголь.

Схема производства стали из металлизованного полупродукта приведена ниже:

Многообразие идей и схем реализации породило множество названий для процессов и продуктов бескоксовой металлургии. Перечислим наиболее употребимые из них:

  • DRI – Direct Reduced Iron
  • SI, SPI – Sponge Iron
  • HBI – Hot Briquetted Iron
  • HDRI – Hot Direct Reduced Iron
  • CDRI – Cold Direct Reduced Iron
  • МП – металлизованный полупродукт
  • ЖПВ – железо прямого восстановления
  • ЖПП – железо прямого получения
  • ПВЖ – прямовосстановленное железо
  • ГЖ – губчатое железо
  • ГБЖ – горячебрикетированное железо
  • Наиболее часто встречающиеся:
  • DRI – процессы и продукты производства «бескоксовой» металлургии
  • SI, SPI (ГЖ) – продукт твердофазных процессов
  • HBI (ГБЖ) – брикетированный продукт твердофазных процессов

В общем виде схема производства металлизованного продукта приведена ниже:

Классификация новых процессов производства железа

По виду используемого восстановителя новые процессы классифицируются по следующим группам:

I. Природный газ

  • шахтная установка непрерывного действия (Midrex, Armco, Purofer, HYL-III);
  • шахтная установка периодического действия – реторта (HYL-I, HYL-II);
  • агрегат с кипящим слоем.

II. Природный газ + уголь

  • вращающаяся трубчатая печь, шахтная установка (ITmk3).
  • одностадийные (Romelt);
  • многостадийные (Corex, Finex, Hismelt, DIOS).

Для процессов I и II групп характерен твёрдый металлизованный продукт, процессы III группы производят жидкий полупродукт. Как уже говорилось выше, распространённость процессов III группы очень ограничена (5...6%), поэтому дальнейшее изложение будет касаться аспектов производства и использования твёрдых металлизованных продуктов.

Развитие технологий производства металлизованного полупродукта

Развитие процессов прямого восстановления идёт параллельно в двух направлениях: с одной стороны увеличивается количество реализованных проектов по технологии Midrex с использованием природного газа в качестве источника восстановителей, с другой стороны – развиваются процессы, основанные на конверсии углей. Наиболее популярна эта технология в Индии – государстве со значительными запасами железной руды и угля и с одним из самых незначительных удельных объёмов потребления стали (51 кг/человека), что делает её перспективной в отношении развития металлургического сектора.

Развитие процессов прямого восстановления железа (% от общего объёма производства DRI)

2005 2010


Особенности производства твёрдого металлизированного продукта

Технологическая схема производства металлизованного продукта предъявляет определённые требования и накладывает некоторые ограничения на используемое сырье:

Процесс металлизации проводится в агрегатах с противотоком твёрдых материалов и газов.

Необходимость окускования исходных материалов для улучшения газопроницаемости шихты.

Причина

Следствие

Восстановление происходит в твёрдом виде без образования жидких продуктов плавки и отделения пустой породы в виде шлака.

Ограничение по содержанию пустой породы в исходном материале. Для производства DRI требуется высококачественное кусковое железорудное сырьё с минимальным содержанием пустой породы.

Восстановление происходит в твёрдом виде, т.е. проходит без удаления примесей.

Ограничение по содержанию нежелательных примесей в исходном материале. Природное сырье должно содержать минимум примесей и нежелательных элементов.

Отсутствие крупнокусковых разрыхлителей в агрегате металлизации.

Необходимость обеспечения нормального газодинамического режима ведёт к необходимости снижения диаметра агрегатов. Негативным результатом этого является снижение удельной производительности агрегатов.

Продуктом является пористое свежевосстановленное железо, находящееся в восстановительной среде внутри агрегата металлизации.

Возникают условия для сваривания частиц материала внутри агрегата. Для снижения эффекта необходимо снижение температурного уровня процесса, что приводит к снижению удельной производительности.

Продуктом является пористое свежевосстановленное железо, находящееся в окислительной среде вне агрегата металлизации.

Высокая площадь контакта с кислородом воздуха в малом объёме приводит к пирофорности – возможности самовоспламенения. Для снижения этого негативного эффекта необходима пассивация: обработка нейтральными веществами, хранение и перевозка в нейтральной среде, брикетирование.

Таким образом, основными недостатками новых процессов производства железа являются:

  • низкая удельная производительность агрегатов;
  • необходимость использования шихты с высоким содержанием железа и низким содержанием пустой породы и примесных элементов;
  • высокая потребность в энергоносителях и кислороде;
  • высокие требования к условиям хранения и транспортировки.

Страны-производители DRI

Условия целесообразности строительства установок по производству DRI:

  • относительно малая потребность внутреннего рынка в стали;
  • малые ресурсы металлического лома и коксующихся углей;
  • значительные ресурсы железной руды и природного газа.

Установки внедоменного получения железа сооружаются, в основном, в развивающихся странах, которые отвечают перечисленным выше условиям: Индия, Венесуэла, Иран, Мексика, Саудовская Аравия. Динамика производства DRI в разбивке по странам приведена на диаграммах.

Стоимость greenfield-проекта по производству DRI в объёме 2 млн. т в год оценивается в $350...$500 млн. Основные параметры проекта:

Качество металлизованного сырья, новый металлизованный продукт - HBI

Производимые DRI отличаются высокими качественными характеристиками:

Выше отмечалось, что губчатое железо ввиду большой площади поверхности склонно к пирофорности в результате окисления на открытом воздухе. Даже если не происходит самовозгорания, то в результате окисления активного свежевосстановленного железа происходит снижение содержания железа и потеря металлургической ценности DRI. Динамика изменения содержание Fe в губчатом железе, хранящемся на открытом воздухе, приведена на диаграмме.

Для снижения пирофорности и улучшения насыпных и утилизационных характеристик DRI применяют технологию брикетирования в горячем состоянии. В результате брикетирования улучшаются физические (насыпной вес), логистические (хранение, транспортировка) и технологические (удобство использования в электропечах) характеристики DRI. Характеристики брикета:

Размер брикета, мм

Насыпная масса, т/м 3

Эффекты брикетирования:

  • увеличение насыпного веса в 1,3...1,8 раза;
  • увеличение плотности в 1,4...1,6 раза;
  • снижение химической активности (пирофорности) на порядок;
  • удобство использования в ДСП (снижение времени загрузки, расположение на границе шлак-металл).

Мировое производство и перевозки металлизованного полупродукта

Динамика производства DRI с 1970 г. приведена на диаграмме.

Мировое производство DR




Преимущества и недостатки использования DRI в EAF

Основным потребителем DRI является электросталеплавильное производство – доля DRI в металлошихте может достигать 70%. При этом DRI обладает определёнными преимуществами относительно других компонентов шихты:

  • стабильность химсостава;
  • низкое содержание нежелательных примесей (сера, фосфор);
  • отсутствие сопутствующих элементов (свинец, медь);
  • простота хранения, погрузки/выгрузки, транспортировки;
  • высокая насыпная плотность;
  • возможность подачи в электропечь без остановки процесса плавления;
  • габаритное сырье гарантирует сохранность электродов от механических повреждений.

Но использование DRI в электропечах имеет свои недостатки:

  • увеличение расхода электроэнергии (каждые 10% DRI: +15 кВт ч/т стали);
  • увеличение удельного расхода электродов (каждые 10% DRI: +0,2 кг/т стали);
  • снижение выхода годного (каждые 10% DRI: –0,4 % объёма производства);
  • увеличение времени плавки и снижение производительности (каждые 10% DRI: +2,5 минуты);
  • увеличение тепловой нагрузки на футеровку в начале процесса.

Эти особенности применения DRI в качестве компонента шихты электрометаллургического производства находят отражение в стоимости DRI.

Справедливая цена DRI

При замещении 30% лома на DRI с аналогичной стоимостью удельные затраты при производстве стали растут на $8/т (см. диаграмму).

Для выполнения условия равенства затрат на 1 т выплавляемой стали цена DRI должна быть меньше цены высококачественного лома на 7%.

Эта оценка подтверждается фактическими данными – исторически цена DRI ниже цены металлолома в среднем на 5% (максимальное отклонение -13%):


Следует отметить, что DRI является прямой альтернативой только для высококачественного лома сравнимого качества и типоразмера. При отсутствии достаточного количества высококачественного лома производство стали сравнимого качества возможно только при условии вовлечения металлизованного сырья.

Общие сведения. Черные и цветные металлы. Основные металлургические процессы.

Металлургия

Общие сведения о металлах и сплавах

Металлы - кристаллические вещества, характерными свойствами которых являются высокая прочность, пластичность, тепло- и электропроводность, особый блеск, называемый металлическим. Свойства металлов обусловлены наличием в их кристаллической решетке большого числа перемещающихся электронов. Металлы составляют около 75 % элементов периодической системы Д. И. Менделеева.
Обычно металлы используют не в чистом виде, а в виде сплавов.
Металлические сплавы - это вещества, образовавшиеся в результате затвердевания жидких расплавов, состоящих из двух или нескольких компонентов. К компонентам, образующим сплав, относятся химически индивидуальные вещества или их устойчивые соединения. Металлические сплавы состоят либо только из металлов (например, сплав меди и цинка - латунь), либо из металлов с небольшим содержанием неметаллов (сплавы железа с углеродом - чугун и сталь). Изменяя компоненты и соотношения между ними, получают сплавы с самыми разнообразными физическими, механическими или химическими свойствами. После затвердевания в составе сплавов могут образоваться твердые растворы, химические соединения или механические смеси.
Твердые растворы возникают в результате проникновения в кристаллическую решетку основного металла (растворителя) атомов другого металла или неметалла (растворимого компонента). По типу расположения атомов растворимого компонента в кристаллической решетке растворителя различают твердые растворы замещения и внедрения.
Твердый раствор замещения возникает в результате замены части атомов в кристаллической решетке основного металла атомами растворяемого компонента. Примерами твердых растворов замещения служат сплавы меди с никелем, железа с никелем, хромом, кремнием, марганцем.

В твердом растворе внедрения атомы растворенного компонента размещаются в свободных промежутках между атомами основного металла. Обычно твердый раствор внедрения возникает в системе, состоящей из металла и неметалла, например в сплаве железа с углеродом. При образовании твердых растворов металлов повышаются прочность, твердость и электрическое сопротивление, но понижается пластичность в сравнении с основным металлом. Твердые растворы составляют основу технических сплавов: конструкционных, нержавеющих и кислотоупорных сталей, латуней, бронз.
Химические соединения образуются при строго определенном количественном соотношении компонентов. К химическим соединениям относится, например, карбид железа (цементит), входящий в состав сплавов железа с углеродом:
3Fe + С = Fe3C.
Цементит отличается высокой прочностью и твердостью, но весьма хрупок. Химические соединения металла с металлом называют интерметаллическими. Сюда входят, например, соединения алюминия с медью СиА12, магния с цинком MgZn2 и др. Интерметаллические соединения чаще всего не подчиняются правилу нормальной валентности. Присутствие химических соединений упрочняет сплавы, но одновременно снижает их пластичность.
Механические смеси возникают в результате срастания кристаллов компонентов, одновременно выпадающих из жидкого расплава при его охлаждении. В кристаллах, входящих в состав механической смеси, сохраняется кристаллическая решетка исходных компонентов сплава. Таким образом, каждый из компонентов сохраняет свои специфические свойства. Механические смеси могут состоять из чистых компонентов, твердых растворов или химических соединений.
Все металлы и сплавы подразделяют на черные и цветные.

Чёрные и цветные металлы

Чугун содержит углерода от 2 до 4,3%, в специальных чугунах (ферросплавах) количество углерода может достигать 5% и более.
Чугун выплавляют в доменных печах из железных руд. Железные руды представляют собой природную смесь окислов железа и минеральной части, называемой пустой породой (кремнезема, глинозема). В процессе плавки руды железо восстанавливается из окислов, освобождается от вредных примесей и отделяется от пустой породы.
Чугуны, получаемые при доменной плавке, в зависимости от состава и назначения делятся на серые, белые и ковкие.
Серый, или литейный, чугун получают в результате медленного остывания жидкого чугуна при значительном содержании в руде углерода и кремния. Этот вид чугуна имеет от 1,7 до 4,2% углерода и до 4,25% кремния. Серый чугун хорошо заполняет формы и легко обрабатывается режущими инструментами. После переплавки чугуна в печи он пригоден для разливки в заранее приготовленные, формы.
В сером чугуне углерод находится в свободном состоянии в виде чешуек графита. Такое строение чугуна придает ему в местах излома серый цвет.
Белый, или передельный, чугун содержит до 4,5% углерода. В зависимости от способа.получения в чугун вводят следующие добавки; кремний, марганец, фосфор, серу. Этот вид чугуна получается при быстром остывании жидкого чугуна. Углерод находится в белом чугуне в связанном состоянии в виде цементита. В местах излома чугун имеет белый цвет. Белый чугун тверд и хрупок; его используют главным образом как сырье для производства стали.
Ковкий чугун содержит от 2 до 2,2% углерода. Его получают из белого чугуна. Отливки закладывают в стальные ящики с чистым песком и томят в печах, т. е. подвергают длительному нагреванию, а после этого медленно охлаждают.
Сталь (ГОСТ 5157—53) содержит углерода до 2%. Сталь обладает высокими механическими показателями и технологическими свойствами.
Сталь получают из чугуна различными способами. Независимо от способа сущность процесса сталеварения заключается в окислении нежелательных примесей, содержащихся в чугуне, и уменьшении содержания в нем углерода, кремния, марганца, фосфора, серы.
Бессемеровский конвертерный метод получения стали из чугуна осуществляется в конвертере.

В конвертере через толщину чугуна продувают сжатый атмосферный воздух при давлении до 2,5 кгс/см2, в результате чего углерод выжигается и чугун превращается в сталь. Выделяющееся при этом тепло повышает температуру металла до 1600° С. В последнее время на многих металлургических заводах через чугун в конвертерах продувают воздух, обогащенный кислородом, или чистый кислород. Это повышает качество выплавляемой стали.
Мартеновский процесс получения стали из чугуна заключается в следующем. Твердый или расплавленный чугун с добавкой скрапа1 или руды плавят на поду мартеновской печи. Требуемая температура при этом создается за счет горения подогретой смеси газообразного топлива и воздуха.
Назначение мартеновского процесса состоит в том, чтобы удалить (выжечь) из расплавленного металла те элементы, которые не должны быть в готовой стали и которые попадают в расплавленный металл из шихты или из газовой среды, а также в том, чтобы снизить до требуемой нормы содержание тех элементов, которые являются" необходимой составной частью стали. В случае надобности процесс завершается введением в сталь легирующих элементов.
Мартеновская сталь по качеству выше конвертерной, однако конвертерный способ более производительный.

Электроплавильный способ получения стали является наиболее совершенным по сравнению с описанными выше методами. По сущности протекающих процессов электроплавильный способ не отличается от мартеновского. Но электроплавка позволяет получить высококачественные стали и упростить технологический процесс выплавки. Широкое применение этого способа пока еще ограничивается высокой стоимостью электроэнергии.
По химическому составу стали подразделяются на углеродистые и легированные; оба эти вида сталей применяются в строительстве. К углеродистым сталям относятся: машиностроительная (конструкционная) с содержанием марганца до 1,1% при содержании углерода до 0,75%, инструментальная с пониженным содержанием марганца (до 0,4%) при содержании углерода выше 0,6%. Легированные стали бывают низколегированные с содержанием легирующих элементов не более 2,5%, среднелегированные с общим содержанием легирующих элементов от 2,5 до 5,5%, высоколегированные с общим содержанием легирующих элементов более 5,5%.
В зависимости от назначения сталь имеет четыре класса: строительная — используется в виде проката без термической обработки для конструкций мостов, зданий, вагонов и т. д.; машиностроительная — применяется для изготовления деталей машин; инструментальная— для изготовления различного металлорежущего и другого инструмента; специального назначения— нержавеющая кислотоупорная, жаропрочная, окалиностойкая и др.

К черным металлам относят железо и сплавы на его основе - сталь и чугун. На долю черных металлов приходится около 95 % производимой в мире металлопродукции. С целью придания черным металлам специфических свойств в их состав вводят улучшающие или легирующие добавки (никель, хром, медь и др.). Черные металлы в зависимости от содержания углерода подразделяют на стали и чугуны.

Сталь - ковкий железоуглеродистый сплав с содержанием углерода до 2 %. Это один из основных конструкционных строительных материалов. Из стали изготовляют строительные конструкции, трубопроводы, арматуру для железобетона.
По способу получения тали разделяют на мартеновские, конвертерные и электростали. По химическому составу в зависимости от входящих в сплав химических элементов стали бывают углеродистые и легированные.
Углеродистая сталь наряду с железом и углеродом содержит до 1 % марганца, до 0,4 % кремния, а также примеси серы и фосфора. Если количество примесей не превышает заданного верхнего предела, их называют нормальными.
Чугун - железоуглеродистый сплав с содержанием углерода 2...4,3 %. В его состав входят также марганец, сера, кремнийд фосфор. Основная масса чугуна идет на производство стали. Кроме того, его используют как самостоятельный конструкционный материал В зависимости от формы связи углерода различают белый и серый чугун.
Белый чугун содержит углерод в химически связанном состоянии в виде карбида железа Fe3C.
В сером чугуне углерод находится в свободном состоянии в виде графита.

Чёрная металлургия

Отрасль тяжёлой индустрии, включающая комплекс взаимосвязанных подотраслей: собственно металлургическое (доменное, сталеплавильное, прокатное), трубное и метизное производства, добычу, обогащение и окускование рудного сырья, коксохимическое производство, производство ферросплавов и огнеупоров, добычу нерудного сырья для чёрной металлургии и вторичную обработку чёрных металлов. Важнейшие виды продукции чёрной металлургии: горячекатаный и холоднокатаный прокат, стальные трубы и металлоизделия.
Чёрная металлургия — основа развития большинства отраслей народного хозяйства. Несмотря на бурный рост продукции химической промышленности, цветной металлургии, промышленности стройматериалов, чёрные металлы остаются главным конструкционным материалом в машиностроении и строительстве. Так, удельный вес чёрных металлов в общем объёме конструкционных материалов, потребляемых ведущими отраслями машиностроения СССР, превышал в 1976 96%. Отрасль потребляет примерно 20% топливно-энергетических ресурсов страны.
На протяжении тысячелетий развитие человеческого общества неразрывно связано с использованием железа как основного материала для изготовления орудий труда. В. И. Ленин называл железо одним из фундаментов цивилизации, одним из главных продуктов современной промышленности.

Производство железа на территории России известно с древнейших времён. Железные руды плавили вначале в сыродутных горнах, затем (примерно с 9 в.) в специальных наземных печах-домницах с дутьём ручными мехами. Заводское производство чугуна и железа началось в 1632—37, когда близ Тулы был построен первый завод с доменной печью, выплавлявшей до 120 пудов чугуна в сутки. В 1700 было выплавлено около 150 тыс. пудов чугуна. Увеличив за первую четверть 18 в. его выплавку в 5 раз, Россия заняла по производству чёрных металлов 1-е место в мире и до начала 19 в. удерживала его. Однако в последующие годы темп роста Ч. м. снизился, и к 1913 страна занимала лишь 5-е место в мире, а её доля в мировой выплавке чугуна и стали составляла 5,3%.

Технология промышленного получения стали

Железо — один из наиболее распространенных в природе элементов. В земной коре его содержится около 5 %. Однако в чистом виде оно не встречается, так как легко соединяется с кислородом, образуя оксиды. Наиболее известные железные руды, из которых получают железо, — магнетит FeeCU (содержащий более 70 % железа), гематит Fe3C>3 (30—50%), лимонит FeO(OH) и др. Наряду с чистым железом в руде содержатся углерод, другие металлы, а также вредные примеси — сера, фосфор, азот и т. п.
Первичный продукт, получаемый из руды, — чугун (сплав железа с углеродом). Чугун производят в доменных печах путем плавления при Т=1600°С железной руды с добавлением кокса и известняка; В процессе сжигания кокса происходит восстановление железа, в то же время известняк предназначен для более легкого отделения неметаллических примесей вместе со шлаком. Расплавленный чугун как более тяжелая составная часть собирается на дне печи и затем выпускается наружу в специальные изложницы. Полученный серый чугун крупнозернистой структуры с 4 %-ным содержанием углерода применяется для литья, белый чугун мелкозернистой структуры — для производства стали.
Сталь — сплав железа с углеродом, процентное содержание которого благодаря особой обработке (легированию) уменьшено до количества, не превышающего 1,2 %. В современной металлургии для получения стали из чугуна используются три способа: мартеновский, бессемеровский и томасовский . Основным сырьем, для получения стали служат белый чугун, металлолом и отходы (стальной скрап), а также добавки в виде кремния, марганца, хрома, никеля, меди и др. для получения сортов стали с заранее заданными свойствами.
Наиболее распространенный способ получения строительных сталей — мартеновский.

Этот способ заключается в том, что на расплавленный чугун, помещенный в специальную печь, обложенную огнеупорами, непрерывным потоком подается воздух с горячим газом, поддерживающим t =2000 °С. Под воздействием такой температуры из расплавленной массы в течение 4—12 ч (в зависимости от требуемого качества стали) сгорает углерод, процентное содержание которого строго контролируется.

Кислородно-конвертерный способ получения стали, получающий в последнее время все большее распространение в мировой практике, состоит в продувке через расплавленный чугун горячей смеси воздуха с кислородом под давлением. В результате в расплавленном чугуне сгорают углерод и вредные примеси. В зависимости от состава внутренней огнеупорной обкладки конвертера способ называется бессемеровским (кислая обкладка) либо томасовским (основная футеровка). Томасовский способ выплавки стали не гарантирует требуемые качества, поэтому данная сталь для строительных конструкций в стране не применяется.
Наиболее качественные многократно легированные стали получают в специальных электрических печах. Максимальная температура около 2200 °С достигается с помощью электродуги, возникающей между двумя угольными электродами. Достоинство способа в том, что на расплавленный металл не попадают вредные элементы из воздуха и газа, как это имеет место в первых двух способах. Сталь, полученная любым методом, отливается в специальные формы и отправляется в таком виде для дальнейшей обработки по производству проката, литья и других изделий.

Цветные металлы. К цветным (нежелезным) относят все металлы, кроме железа. Чаще всего в строительстве используют металлы и сплавы на основе алюминия, меди, цинка и титана.
Металлы очень технологичны: во-первых, изделия из них можно получать различными индустриальными методами (прокатом, волочением, штамповкой и др.), во-вторых, металлические изделия и конструкции легко соединяются друг с другом с помощью болтов, заклепок и сварки.
Однако, с точки зрения строителя, металлы имеют и недостатки. Высокая теплопроводность металлов требует устройства тепловой изоляции металлоконструкций зданий. Хотя металлы негорючи, но металлические конструкции зданий необходимо специально защищать от действия огня. Это объясняется тем, что при нагревании прочность металлов резко снижается и металлоконструкции теряют устойчивость и деформируются. Большой ущерб народному хозяйству наносит коррозия металлов. И наконец, металлы широко применяют в других отраслях промышленности, поэтому их использование в строительстве должно быть обосновано экономически.

Металлургия (от греческого «металлон»— «рудник», «металл» и «эргон»—«работа») — в первоначальном, узком значении «искусство выплавлять металлы из руд». В современном значении — это область науки и техники и отрасль промышленности, охватывающие все процессы получения металлов и сплавов и придания им определенных форм и свойств.

Исторически сложилось разделение металлургии на цветную и черную. К черной металлургии относятся сплавы на основе железа — чугун, сталь, ферросплавы (на долю черных металлов приходится около 95% всей произведенной в мире металлопродукции). Цветная металлургия включает производство большинства остальных металлов. Кроме того, металлургические процессы применяются и для получения неметаллов и полупроводников (кремний, германий, селен, теллур и др.). А в целом современная металлургия охватывает процессы получения почти всех элементов периодической системы, за исключением галоидов и газов.
Стремительно развивается наука о металлах — металловедение, основы которой заложили русские ученые П. П. Аносов и Д. К. Чернов. Металловеды познают структуру металлов, находят пути для улучшения ях свойств, создают новые сплавы, позволяющие конструкторам разрабатывать принципиально новые машины — особо легкие, особо прочные и т. д.

Основу современной черной металлургии составляют заводы, каждый из которых по территории и количеству работающих равняется небольшому городу. Сложный путь проходит здесь металл. Сначала на горно-обогатительных комбинатах (ГОК) обогащают руду, затем на заводах черной металлургии ее обжигают, превращая в агломерат или окатыши. Из них в доменных печах выплавляют чугун. Затем чугун попадает в сталеплавильный цех, где его переплавляют в сталь в мартеновских печах, кислородных конверторах или электропечах (см. Электрометаллургия). Стальные слитки транспортируют в прокатные цехи, где из них делают металлические изделия: рельсы, балки, листы, трубы, проволоку (см. Прокатка, прокатный стан). Между цехами проложены рельсы, по которым ходят железнодорожные составы, развозя руду и жидкий чугун, стальные слитки и готовый прокат.
Такой же, а в ряде случаев и более сложный путь проходят металлы и на заводах цветной металлургии. Технологический процесс получения некоторых цветных металлов включает десятки операций.
А что же ждет металлургию в будущем? Неужели человечеству, чтобы удовлетворить свои потребности в металле, придется постоянно строить гигантские заводы? Ведь не следует забывать, что металлургия в основном имеет дело с огнем: чтобы расплавить руду или сталь, их нужно нагреть до высокой температуры. А пирометаллургия (так называется отрасль металлургии, которая использует нагрев металла: от греческого слова «пир»—«огонь») сжигает кислород воздуха, засоряет атмосферу отходами сгорания, тратит много пресной воды на охлаждение агрегатов. Короче говоря, наносит вред природе. Поэтому ученые разработали новые пути развития металлургии. Это, прежде всего, прямое восстановление железа из руды, минуя доменный процесс. Установки прямого восстановления, которые полностью автоматизированы и надежно герметизированы, будут выплавлять из руды металлические слитки или чистый железный порошок. А потом слитки или порошок, упакованный в контейнеры, доставят на машиностроительные заводы, где из них изготовят изделия либо обычным методом, либо методом порошковой металлургии. Эти заводы вовсе не обязательно делать такими огромными, как существующие. Наоборот, они будут маленькими и, как предполагают ученые, иногда мобильными, т. е. подвижными. На баржах или с помощью вертолетов их будут доставлять к небольшим месторождениям руды, разработка которых сейчас считается невыгодной. Мини-заводы, полностью автоматизированные, сделают разработку этих месторождений экономически целесообразной.
Быстрыми темпами развивается электрометаллургия, все более широкое применение находит электричество на всех последующих стадиях обработки металлов. На очереди — создание полностью автоматизированного металлургического производства, управляемого ЭВМ,— металлургические цехи-автоматы.

Коррозия металлов

Процессы разрушения материалов, вызванные действием на них различных химических веществ, называются коррозией. Химические вещества, разрушающие строительные материалы, называются агрессивными. Агрессивной средой может служить атмосферный воздух, вода, различные растворы химических веществ, газы.
Атмосферная коррозия происходит в обычных атмосферных условиях при взаимодействии кислорода воздуха, влаги и металла. Этой коррозии подвергаются изделия, имеющие большую поверхность, например кровли, металлические фермы, стропила, мосты.
Подводной коррозии подвергаются различные сооружения, находящиеся в воде, причем процесс усиливается при наличии в воде даже незначительного количества кислот или солей.
Почвенная коррозия возникает при воздействии почвы на металл водопроводных и канализационных сетей. Коррозия усиливается при наличии в почвенной воде солей и колебаниях уровня грунтовых вод.
В зависимости от природы агрессивной среды коррозия металла может происходить химическим и электрохимическим путем.
Химический коррозионный процесс возникает при действии на металлы сухих газов при высоких температурах или жидких неэлектролитов (жидкостей, не проводящих электрический ток). К химической коррозии относится также разрушение металла кислородом сухого воздуха и другими газами (углекислым, сернистым) .
Электрохимический коррозионный процесс вызывается действием на металл электролитов — жидкостей, nposoдящих электрический ток. При электрохимической коррозии разрушение металла связано с возникновением и протеканием электрического тока с одних участков металла на другие. При действии на металл растворов кислот и щелочей металл отдает свои ионы электролиту, а сам постепенно разрушается. Электрохимический коррозионный процесс может возникать также при контакте двух разнородных металлов. Например, при контакте железа с хромом будет разрушаться хром, железа с медью — железо.

В некоторых случаях коррозионный процесс вызывают блуждающие токи, растекающиеся в грунте от рельсов электрифицированных железных дорог и проходящие через толщу земли, а также по различным металлическим устройствам, уложенным в земле (электрокабелям, трубам водопровода). Блуждающие токи, попав на металлические трубопроводы и другие подземные устройства, находящиеся во влажной и подсоленной почве, создают условия для электролиза. Ионы (электрически заряженные частицы металла), переходят в почвенный раствор (электролит); в результате потерь элементарных частичек металла на подземных кабелях, водопроводных и канализационных трубах возникают коррозионные язвы.
Коррозионный процесс может быть местным, когда разрушение металла происходит на некоторых участках, равномерным, когда металл одинаково разрушается по всей поверхности, и межкристаллитным, когда разрушение происходит по границам зерен металла. Чистая незащищенная поверхность металла в большинстве случаев подвергается коррозионным процессам различных видов. Образующаяся при этом на поверхности некоторых металлов окис-ная пленка может приостановить развитие коррозионного процесса. Такие защитные пленки появляются,на поверхности меди, бронзы, алюминия. Сталь принадлежит к металлам, которые плохо сопротивляются коррозионному процессу; разрушения поверхности стальных изделий, вызванные коррозионным процессом, быстро распространяются и на внутренние слои металла,
Потери от коррозионных процессов приносят народному хозяйству большой материальный ущерб. Бороться с этим явлением можно различными средствами.
Где возможно, металлы заменяют другими материалами, которые менее восприимчивы к коррозии. Е-сли металлические конструкции, заменить нельзя, их покрывают лаками, эмалями. Образующаяся при этом пленка предохраняет металл от действия внешней среды. Для защиты от коррозии металлические конструкции покрывают красками, оцинковывают, лудят, хромируют. Кроме того, для изготовления конструкций используют металлы, наибрлее стойкие в данной агрессивной среде. Например, низколегированные стали используют в условиях низкой влажности и воздействия щелочей, высоколегированные - в условиях повышенной влажности и высокоагрессивных газов.. Легирование -никелем резко повышает стойкость стали против атмосферной и,подводной коррозии.
Металлические строительные конструкции защищают, от коррозионных процессов способом газопламенного напыления на их поверхность порошкообразных пластичных полимеров, в том числе полиэтилена, полипропилена, капрона, а также специальными.составами из этих материалов с добавкой или без добавки порошкообразных наполнителей и красителей.

Мировой кризис негативно отразился на экономике России, но металлургическая промышленность сохранила свои возможности благодаря предшествующим крупным денежным вкладам. Металлургия – это основная отрасль государственной промышленности, своеобразный фундамент для развития экономики в целом.

В общем экспорте страны доля металлургии составляет 14%. Экспортируется более 40 % стали, выплавляемой в РФ. Продукция металлургов в ВВП составляет 5 %, во всем промышленном комплексе – 17%. Металлургическая отрасль вносит существенный вклад в экономику страны и наполняет бюджет. В связи с неблагоприятной экономической обстановкой принят также план по замещению импортной продукции на отечественную. Повышение конкурентной способности отрасли входит в стратегические планы государственного уровня. Предприятия отрасли модернизируются и применяют .

Востребованные инновации касаются обновления технологий, снижения ресурсоёмкости, улучшения экологической составляющей в металлургии. Особый упор делается на продукцию электродную, углеграфитовую, твёрдосплавную, полупроводниковую, прокатную. Чтобы избежать упадка в металлургической промышленности, необходимо активизировать инновационную деятельность. Научно-исследовательские учреждения оказывают существенную помощь в модернизации отрасли.

10 инноваций в металлургии 2018

Инновации в металлургии:

  1. Карусельная печь. Задействована в чёрной металлургии, снижает напряжение в подовой части печи.
  2. Спроектирован и введён в эксплуатацию печи Ванюкова для переработки шлаков и отходов в цветной металлургии. Аналог этой инновации – печь Ромелт, задействованная в чёрной металлургии. Преимущество её – возможность работы на низкосортном угле и переработка шлакоотходов. Хотя КПД такой печи ниже, чем у доменной, последняя не способна перерабатывать отходы и шлаки. Это большой рывок вперёд, ведь металлургические комбинаты завалены отходами, которые некуда девать. Стоимость проекта около 250 млн рублей, а строительство вне металлургического комбината будет стоить миллиард рублей. Инновация осуществлена за счёт частных инвестиций.
  3. Предприятие «Челябинский цинковый завод» осваивает флотационную технологию получения серебра из кеков цинкового производства. Инновационная технология даёт до 98 кг серебра из 100 килограммов сульфидного флотоконцентрата.
  4. Создана мембранная технология очистки сложных растворов в металлургии. Инновация позволяет очищать растворы от сульфатов тяжёлых цветных металлов на 99%. Новшество открывает возможность создания закольцованного водооборота на заводах отрасли.
  5. При плавке чугуна и стали используют синтетический легкоплавкий флюс. Инновация помогает увеличить способность шлаков к рафинированию.
  6. Динамический нанотестер. С помощью изобретения исследуют физико-механические параметры материалов разного происхождения, определяют коэффициент трения, модуль
    Юнга, нанотвёрдость и др.
  7. Комплекс для исследования и диагностики сыпучих нановеществ (нанотрубки, порошки для спекания и катализа, медпрепараты). Инновация предназначена для быстрого определения свойств и характеристик материала на разных этапах производства.
  8. Инновации касаются также водоснабжения производств чёрной металлургии. Для расчёта концентраций соли в подразделах, оптимизации структуры систем водоснабжения
    разработана технологическая модель с её математическим описанием.
  9. Индукционная плавильная установка ТВЧ Элсит позволяет экономить электроэнергию. Благодаря высокой мощности печь моментально нагревается и позволяет сразу
    плавить металл.
  10. Плоское прокатное оборудование для поперечно-клиновой прокатки заготовок применяют в изготовлении высокоточных деталей сложной конфигурации. Автоматизированный комплекс позволяет повысить производительность в 2 раза, уменьшить на 30% расход металлопроката, повысить точность изготовления и снизить трудоёмкость дальнейших операций.

Развитие металлургической промышленности закономерно входит в стратегическое планирование федерального уровня. Использование инноваций в металлургии, внедрение современной техники, модернизация действующей увеличивают коэффициент обновления основных производственных фондов до 5%. В перспективе, к 2020 году металлургическая промышленность выйдет на мировой уровень по количеству произведенной продукции.

Чёрная металлургия

Инновации в чёрной металлургии задействованы в отдельных направлениях производства:

  1. Доменном.
    Предусмотрено строительство установок по вдуванию угольной пыли, увеличение выплавки чугуна до 20% и уменьшением расхода природного газа.
  2. Сталеплавильном.
    Отказ от использования мартеновских печей для производства стали, уменьшение расхода металлопроката до 1088 кг/т в 2020 году с нынешних 1142
    кг/т. Использование сверхмощных печей для экономии электроэнергии(350 кВт*ч /т в сравнении с нынешними 500 кВт*ч/т).
  3. Прокатном.
    Увеличение выпуска листового металла в общем выпуске металла до 65%, доведение до уровня экономически развитых стран.
  4. Цветная металлургия
    Темп роста отрасли вызван необходимостью заместить импорт отечественной продукцией. Быстрый рост требует инновационного подхода к технологии, технике и организации производства. Нестабильность внешнего рынка и недостаточная ёмкость отечественного требуют развития последнего.

Главенствующими вопросами цветной металлургии являются: возрастание части выпуска алюминия в электролизерах и наращивание мощностей в производстве тяжёлых цветных металлов по технологии автогенных процессов. До конечного срока «Стратегии развития чёрной и цветной металлургии России на 2014-2020 годы» их часть должна составить 97% от общего производства.

Комбинат «Североникель»

Предприятие с давней историей, с 1998 года комбинат «Североникель» входит в состав АО «Кольская ГКМ». Сейчас на нём перерабатывается файнштейн и завершается производственный цикл.

«Норникель» инвестировал в обновление производства никеля Кольской ГМК более 20 млрд рублей. Планируется освоить новую технологию электроэкстракции для рафинирования никеля. Никелевые аноды не будут плавить, так как сырьём выступит никелевый порошок. Постепенно старые ванны для электролиза заменят новыми. Всего планируется постепенно заменить 476 ванн в цехе электролиза.

Кольская горно-металлургическая компания модернизирует обогатительную фабрику. Усовершенствования касаются АСУ ТП. Комплекс замещается новым, поскольку прекращено производство запасных комплектующих и возможны аварийные ситуации. Новое оборудование устанавливают поэтапно. Уже произведена замена на пульпонасосной станции, сейчас модернизируются 3 секции флотации. За 2018 год будет заменён весь аппаратный комплекс предприятия.

Предприятие планирует модернизировать всю систему управления до начала 2019 года и соединить в одну централизованную систему управления обогатительной фабрики СУ отдельных производственных участков. Это позволит далее совершенствовать технологический процесс, проявлять гибкость при смене технологических циклов.

Комбинат «Североникель» осваивает новый способ переработки платинорениевых катализаторов, результатом которой является концентрат платины и перренат аммония.

Для предприятия разрабатывается технологическая линия очистки стоковых вод до приемлемого уровня.

← Вернуться

×
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:
Я уже подписан на сообщество «i-topmodel.ru»