Методы изготовления заготовок. Методы получения заготовок

Подписаться
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:

Технологические характеристики типовых заготовительных процессов

5.1 Виды заготовок и их характеристики

5.2 Методы получения заготовок

5.3 Выбор заготовки и ее проектирование

5.4 Припуски на механическую обработку

5.5 Факторы, влияющие на величину припусков

5.5 Определение промежуточных размеров в соответствии с маршрутом обработки

Заготовка – предмет производства, из которого путем изменения размеров, формы, качества поверхности получается готовая деталь. От правильного выбора заготовки в значительной мере зависят общая трудоемкость и себестоимость изготовления детали.

В автомобильной и тракторной промышленности применяются следующие виды заготовок:

– отливки из чугуна, стали и цветных металлов;

– поковки и штамповки из стали и некоторых цветных сплавов;

сортовой прокат из стали и цветных металлов (круг, квадрат, шестигранник, профильный, листовой);

– штампосварные заготовки из стального проката и других металлов (являются наиболее целесообразными и экономичными);

– штамповки и отливки из пластмасс и других неметаллических материалов;

– металлокерамические заготовки, получаемые методом порошковой металлургии.

Механические свойства отливок, с одной стороны, поковок и штамповок с другой, значительно отличаются одна относительно другой, поэтому уже при проектировании машин вид заготовки каждой ее детали определяется, как правило, конструктором. Однако делать это он должен по согласованию с технологами механических и заготовительных цехов. В ряде случаев, когда можно применять различные виды заготовок (например, поковки, штамповки или сортовой металл), наивыгоднейшее решение получают путем сопоставления конкурирующих вариантов.

Литые заготовки. Применяются различные методы получения отливок. Отливки служат заготовками для фасонных деталей. Из чугуна отливают картеры, коробки, корпуса подшипников, кронштейны маховики, шкивы, фланцы и т.п. При более высоких требованиях к механическим свойствам деталей аналогичные отливки выполняют из стали. Из алюминиевых сплавов отливают блоки цилиндров, картеры, коробки, поршни.

Основные способы получения отливок:

– литье в песчаные формы (ручная или машинная формовка), точность отливок 15-17 квалитет, шероховатость поверхностей R Z 320-160 мкм;

– литье в оболочковые формы – метод получения точных и качественных мелких и средних отливок из чугуна и стали, точность отливок 14 квалитет, данный способ целесообразно применять в серийном и массовом производстве;

– литье по выплавляемым моделям применяют для получения мелких отливок сложной конфигурации, обеспечивает высокую точность 11-12 квалитет и шероховатость поверхностей R Z 40-10 мкм, поверхности деталей либо совсем не обрабатывают, либо только шлифуют;



– литье в кокиль (металлические формы) обеспечивает получение отливок точности 12-15 квалитета и шероховатости поверхностей R Z 160-80 мкм;

– литье под давлением применяют для получения мелких отливок сложной формы из цветных сплавов при крупномасштабном производстве, отливки выполняются с точностью 9-11 квалитет и шероховатость R Z 80-20 мкм;

– центробежное литье применяют в основном для получения заготовок, имеющих форму тел вращения (цилиндры, стаканы, кольца), точность 12-14 квалитет и шероховатость R Z 40-20 мкм.

Заготовки, получаемые обработкой давлением . К методам получения исходных заготовок обработкой давлением относятся свободная ковка, горячая и холодная штамповка. Механические свойства кованных и штампованных заготовок выше свойств заготовок, получаемых литьем. Это основной вид заготовок для изготовления ответственных деталей из стали и некоторых цветных сплавов.

Получение заготовок методом ковки применяют в основном в условиях индивидуального или мелкосерийного производства, когда экономически нецелесообразно изготовлять дорогие штампы.

Для уменьшения расхода металла при ковке заготовок применяют кольца и подкладные штампы.

В условиях серийного и массового производства мелкие и средние стальные заготовки получают методом штамповки. Достоинства этого метода: значительная производительность, резкое уменьшение величины припусков по сравнению со свободной ковкой.

В зависимости от применяемого оборудования штамповку подразделяют на штамповку на молотах, прессах, горизонтально-ковочных машинах и специальных машинах. Штамповку производят как горячем, так и в холодном состоянии.

Штамповка в холодном состоянии позволяет получить заготовку с высокими физико-механическими свойствами, но этот метод очень энергоемок и применяется очень редко.

Заготовки из проката. Прокат применяют в тех случаях, когда конфигурация детали близко соответствует какому-либо виду сортового материала (круглого, шестигранного, квадратного, прямоугольного). Широко используют также горячекатаные бесшовные трубы различной толщины и диаметра, а также профильный прокат (угловая сталь, швеллеры, балки).

Прокат выпускают горячекатаный и калиброванный холоднотянутый. При выборе размера прокатного материала следует пользоваться стандартами на материал, учитывая конфигурацию детали, точность выполняемых размеров и необходимость экономии металла. Круглый горячекатаный сортовой материал повышенной и нормальной точности выпускают по ГОСТ 2590-2006, круглый калиброванный – по ГОСТ 7417-75. С целью приближения формы заготовки к конфигурации деталей типа валов и осей целесообразно применение в условиях крупносерийного и массового производства проката переменного поперечного сечения (периодического проката).

Комбинированные заготовки . При изготовлении заготовок сложной конфигурации значительный экономический эффект дает изготовление отдельных элементов заготовки прогрессивными методами (штамповка, отливка, сортовой и фасонный прокат) с последующим соединением этих элементов сваркой или другими способами. В сельскохозяйственных машинах сварку применяют: при изготовлении рам, колес, и т.д.

Заготовки из металлокерамики . Металлокерамические материалы, получаемые путем прессования порошковой смеси с последующим спеканием, пористы, поэтому их применение эффективно при изготовлении подшипниковых втулок. Из металлокерамики изготавливают также накладки на тормозные колодки и другие фрикционные детали, имеющие высокий коэффициент трения (0,26-0,32 по стали всухую и 0,10-0,12 при работе в масле).

Порошковая металлургия включает следующие этапы:

– подготовка порошков исходных материалов (медь, вольфрам, графит и др.);

– прессование заготовок в специальных прессформах. Если необходимо получить максимально плотную деталь, то уплотнение производят с предварительным нагревом до температуры спекания, но ниже точки плавления основного компонента.

Порошок спекают в газовых или электрических печах в среде водорода или других защитных газов. Если деталь работает в условиях значительного трения, то ее пропитывают маслом или в состав добавляют графитовый порошок. Для получения точных заготовок после спекания их калибруют.

Выбор заготовки и ее проектирование . Важная задача при изготовлении заготовок приближение их по форме к готовым деталям.

На выбор вида заготовки и метода ее получения влияют материал детали, ее размеры и конструктивные формы, годовой выпуск деталей и другие факторы.

При разработке процессов изготовления деталей применяют два основных направления:

– получение заготовок, наиболее приближенных по форме к размерам готовой детали, когда на заготовительные процессы приходится основная трудоемкость;

– получение заготовок с большими припусками, т.е. основная трудоемкость приходится на цех механической обработки.

Проектирование заготовок выполняется в следующей последовательности:

– определяется вид исходной заготовки (прокат, штамповка, отливка);

– разрабатывается технологический маршрут механической обработки заготовки;

– определяется (рассчитывается) операционный и общий припуски на все обрабатываемые поверхности;

– на чертеже детали вычерчиваются общие припуски на обработку каждой поверхности;

– назначаются предварительные размеры заготовок и допуски на них;

– корректируются размеры заготовки с учетом метода ее изготовления, устанавливаются напуски, формовочные уклоны, радиусы и т.д.

Допуски и припуски на механическую обработку на чугунные и стальные заготовки, отливаемые в песчаные формы, регламентируются ГОСТ 26645-89 «Отливки из металлов и сплавов».

Для выбранного способа литья по таблицам определяют класс точности размеров, класс точности масс и ряды припусков.

Определяют допуски на основные размеры отливки и основные припуски. Для определения дополнительного припуска определяют степень коробления (отношение наименьшего габаритного размера отливки к наибольшему). Эскиз отливки представлен на рисунке 6.

Рисунок 6

Для диаметральных размеров размеры заготовки определяется по формулам:

d= d N + (Z 1 + Z 2)·2 ± Т (5.1)

D= D N - (Z 1 + Z 2)·2 ± Т (5.2)

где Z 1 – основной припуск

Z 2 – дополнительный припуск;

Т – допуск на размер (симметричный).

Пример записи точности отливки 9-9-5-3 ГОСТ 26645-85, где 9– точность размера, 9 – точность массы, 5 – степень коробления, 3 – ряд припусков.

Для изготовления валов используется прокат стальной горячекатаный круглый по ГОСТ 2590-2006 диаметром от 5 до 270 мм, трех степеней точности: А – высокой точности; Б – повышенной точности; В – обычной точности (рисунок 7).

Рисунок 7

Прокат стальной калиброванный круглый по ГОСТ 7417-75, диаметром от 3 до 100 мм с полем допуска h9, h10, h11 и h12 (рисунок 8):

Рисунок 8

Если вал имеет большие перепады ступеней, заготовку получают ковкой или штамповкой. Поковка по ГОСТ 7829-70 из углеродистой легированной стали, изготовляемая свободной ковкой на молотах (рисунок 9):

Рисунок 9

Размеры заготовки определяется по формуле:

d 1 = d N + Z 1 +,

где Z 1 – припуск на размер;

Т 1 – допуск на размер (допуск симметричный).

Поковки по ГОСТ 7062-90 применимы для заготовок больших размеров, изготавливаемых ковкой на прессах.

При ковке заготовок желательно, чтобы она имела простую симметричную форму и следует избегать пересечения цилиндрических элементов между собой.

Штампованные заготовки выполняются в соответствии с ГОСТ 7505-89 «Поковки стальные штампованные». Стандарт устанавливает величины припусков, допуски размеров, отклонений формы и наименьшие радиусы закругления углов.

Припуски и допуски устанавливают в зависимости от массы и размеров поковки, группы стали, степени сложности, класса точности поковки, шероховатости обработанной поверхности детали (рисунок 10).

Шероховатость поверхности штамповок – R Z 320-80 мкм. Если после штамповки произвести чеканку, то можно выдержать точность отдельных размеров до 0,02…0,05 мм.

Рисунок 10

Геометрическая форма заготовки должна обеспечивать возможность свободной выемки из штампа. Для этой цели предусмотрены уклоны поверхности.

Выемки и углубления в заготовке можно выполнять только в направлении движения штампа. Недопустимы узкие и длинные выступы в плоскости разъема штампа или перпендикулярные к ним. Боковые поверхности должны иметь штамповочные уклоны. Переходы с одной поверхности на другую должны иметь закругления, размеры углов и радиусы закруглений устанавливаются стандартами. Хвостовики с конической формой затрудняют штамповку, поэтому их рекомендуется делать цилиндрическими.

Припуски на механическую обработку. Всякая заготовка, предназначенная для дальнейшей механической обработки, изготавливается с припуском на размер готовой детали. Припуск представляет собой излишек материала, необходимый для получения окончательных размеров и заданного класса шероховатости поверхностей деталей, он снимается на станках режущими инструментами. Поверхности детали, не подвергающиеся обработке, припусков не имеют.

Разность размеров заготовки и окончательно обработанной детали определяет величину припуска, т.е. слоя, который должен быть снят при механической обработке.

Припуски делятся на общие и межоперационные.

Общий припуск на обработку – слой металла, подлежащий удалению при механической обработке заготовки для получения заданных чертежом и техническими условиями формы, размеров и качества обработанной поверхности. Межоперационный припуск – слой металла, удаляемый при выполнении одной технологической операции. Величина припуска обычно дается «на сторону», т.е. указывается толщина слоя, снимаемого на данной поверхности.

Общий припуск на обработку представляет собой сумму всех операционных припусков.

Припуски могут быть симметричные и ассиметричные, т.е. расположенные по отношению к оси заготовки симметрично и ассиметрично. Симметричные припуски могут быть у наружных и внутренних поверхностей тел вращения; они могут быть также у противолежащих плоских поверхностей, обрабатываемых параллельно, одновременно.

Припуск должен иметь размеры, обеспечивающие выполнение необходимой для данной детали механической обработки при удовлетворении установленных требований к шероховатости и качеству поверхности металла и точности размеров деталей при наименьшем расходе материала и наименьшей себестоимости детали. Такой припуск является оптимальным. Целесообразно назначать припуск, который можно убрать за один проход. На станках средней мощности за один проход можно снимать припуск до 6 мм на сторону. При излишних припусках станки должны работать с большим напряжением, увеличивается их износ и затраты на ремонт; повышаются затраты на режущий инструмент, т.к. увеличивается время работы инструмента, а, значит, увеличивается его расход; увеличение глубины резания требует повышения мощности станка, что в результате ведет к увеличению расхода электроэнергии.

Факторы, влияющие на величину припусков. Величины припусков на обработку и допуски на размеры заготовки зависят от ряда факторов, степень влияния которых различна. К числу основных факторов относятся следующие:

– материал заготовки;

– конфигурация и размеры заготовки;

– вид заготовки и способ ее изготовления;

– требования в отношении механической обработки;

– технические условия в отношении качества и класса шероховатости поверхности и точности размера.

Материал заготовки . У заготовок, получаемых литьем, поверхностный слой имеет твердую корку. Для нормальной работы инструмента необходимо, чтобы глубина резания была больше толщины корки отливки. Толщина корки бывает различной, она зависит от материала, размеров отливки и способов литья; для отливок из чугуна – от 1 до 2 мм; для стальных отливок – от 1 до 3 мм.

Поковки и штамповки могут быть из легированной или углеродистой стали; поковки изготовляются из слитка или проката. При изготовлении поковок на них образуется окалина. Для удаления этого слоя при обработке углеродистых сталей часто оказывается достаточной глубина резания, равная 1,5 мм; для легированных сталей глубина резания должна быть 2–4 мм.

Поверхностный слой у штамповок обезуглероживается, и при обработке его необходимо удалить. Толщина этого слоя у штамповок из легированных сталей до 0,5 мм; у штамповок из углеродистых сталей 0,5–1,0 мм в зависимости от конфигурации и размеров детали и других факторов.

Конфигурация и размеры заготовки . Заготовки сложной конфигурации получить свободной ковкой затруднительно, поэтому ради упрощения формы заготовки иногда оказывается необходимым увеличивать припуски на обработку.

В штамповках сложной конфигурации затруднено течение материала, поэтому для таких штамповок также необходимо увеличивать припуски.

В отливках сложной конфигурации в целях более равномерного остывания металла необходимо делать плавные, постепенные переходы от тонких стенок толстым, что также вызывает необходимость увеличения припуска. При изготовлении крупных отливок необходимо учитывать усадку.

Вид заготовки и способ ее изготовления . Заготовки как указывалось, бывают в виде отливок, поковок, штамповок и проката. В зависимости от вида заготовки и способа ее изготовления величины припусков и допуски на размеры заготовки различны. Так, для литой детали, изготовленной ручной формовкой, припуск больше, чем металлических формах. Наиболее точными, следовательно, с наименьшими припусками получаются отливки при литье в оболочковые и металлические формы, при литье под давлением, по выплавляемым моделям. Если сравнивать припуски поковок и штамповок для одних и тех же деталей, то можно убедиться, что припуски у поковок больше, чем у штамповок. В заготовках из проката припуски меньше, чем в заготовках, получаемых литьем, ковкой или штамповкой.

Требования в отношении механической обработки . В соответствии с требованиями к шероховатости поверхности и точности размеров детали применяется тот или иной способ механической обработки. Для каждой промежуточной операции механической обработки необходимо оставлять припуск, снимаемый режущим инструментом за один или несколько проходов. Следовательно, общий припуск находится в зависимости от способов механической обработки, требующейся для изготовления детали по техническим условиям.

Технические условия на качество и точность поверхностей . Чем выше требования, предъявляемы к детали в соответствии с техническими требованиями, тем больше должна быть величина припуска. Если поверхность должна быть гладкой, то необходимо давать припуск, позволяющий после черновой обработки произвести и чистовую. Если размеры должны быть выполнены точно в пределах установленных допусков, то припуск должен обеспечить возможность достижения необходимой точности и класса шероховатости поверхности, что должно быть учтено при определении величины припуска. При этом необходимо предусмотреть слой металла, компенсирующий погрешности формы, возникающие в результате предшествующей обработки (особенно термической), а также погрешность установки детали на данной операции.

Определение промежуточных размеров в соответствии с маршрутом обработки. Нормативные припуски устанавливаются соответствующими стандартами. В производственных условиях размеры припусков устанавливают на основании опыта, пользуясь практическими данными в зависимости от веса (массы) и габаритных размеров деталей, конструктивных форм и размеров, необходимой точности и класса чистоты обработки. Многие заводы, научно-исследовательские и проектные институты имеют свои нормативные таблицы припусков, разработанные ими на основании длительного опыта применительно к характеру своего производства.

В машиностроении широко применяют опытно-статистический метод установления припусков на обработку. При этом общие и промежуточные припуски берут по таблицам, которые составляют на основе обобщения производственных данных передовых заводов. Недостаток этого метода заключается в том, что припуски назначают без учета конкретных условий построения технологических процессов.

Расчетно-аналитический метод определения припусков, заключается в анализе различных условий обработки и установлении основных факторов, определяющих промежуточный припуск (факторы, влияющие на припуски предшествующего и выполненного переходов) технологического процесса обработки поверхности. Значение припуска определяется методом дифференцированного расчета по элементам, составляющим припуск с учетом погрешности обработки на предшествующем и данном технологических переходах. Данный метод был предложен профессором В.М. Кованом,

Симметричный припуск на диаметральные размеры определяется по формуле:

2Z b min = 2[(H a + Т a) +].

Симметричный припуск на две противоположные параллельные плоские поверхности:

2Z b min = 2[(H a + Т a) +()].

Ассиметричный припуск на одну из противоположных параллельных плоских поверхностей:

Z b min = (H a + Т a) +(),

где Z b min – минимальный припуск на выполняемый переход на сторону;

H a – величина микронеровностей от предыдущей обработки;

Т a – величина дефектного поверхностного слоя, оставшегося от предыдущей обработки;

ρ а – суммарное значение пространственных отклонений от предыдущей обработки;

ε b – погрешность установки заготовки при выполнении операции

Расчетный метод из-за его сложности большого распространения не получил, хотя и представляет определенный интерес с методической точки зрения.

Для удобства расчета располагают операционные припуски и допуски на различных стадиях обработки в виде схем.

Когда последовательность и способ обработки каждой поверхности установлены, необходимо определить величины промежуточных припусков и промежуточные размеры заготовки по мере ее обработки от перехода к переходу. В итоге определяются размеры заготовки более обосновано, то есть с учетом обработки, которой она будет подвергаться.

Для обработки наружной поверхности (точность обработки вала - 7-й квалитет, шероховатость R a 1,25 мкм) схема расположения промежуточных размеров представлена на рисунке 10.

Схема расположения промежуточных размеров при обработке отверстия (точность обработки - 7-й квалитет) представлена на рисунке 11.

Схема расположения промежуточных размеров при обработке торцовой поверхности (точность обработки – 11-й квалитет, шероховатость R a 2,5 мкм) представлена на рисунке 12.

Т 3 – допуск после чистового точения;

z 3 – припуск на чистовое точение;

T 4 – допуск после чернового точения;

T 5 – допуск заготовки

Рисунок 10 – Схема расположения промежуточных размеров при обработке наружных поверхностей

Т 1 – допуск размера, заданный чертежом;

z 1 – припуск на чистовое шлифование;

Т 2 – допуск после предварительного шлифования;

z 2 – припуск на предварительное шлифование;

Т 3 – допуск после протягивания;

z 3 – припуск на протягивание;

T 4 – допуск поле растачивания;

z 4 – припуск на растачивание;

T 5 – допуск заготовки

Рисунок 11 - Схема расположения промежуточных размеров при обработке внутренних поверхностей

Т 1 – допуск, заданный чертежом;

z 1 – припуск на предварительное шлифование;

Т 2 – допуск после чистового точения;

z 2 – припуск на чистовое точение;

Т 3 – допуск после чернового точения;

z 3 – припуск на черновое точение;

T 4 – допуск заготовки

Рисунок 12 - Схема расположения промежуточных размеров при обработке торцовых поверхностей

В современном производстве одним из основных направлений развития технологии механической обработки является использование черновых заготовок с экономичными конструктивными формами, обеспечивающими возможность применения наиболее оптимальных способов их обработки, т. е. обработки с наибольшей производительностью и наименьшими отходами. Это направление требует непрерывного повышения точности заготовок и приближения их конструктивных форм и размеров к готовым деталям, что позволяет соответственно сократить объем обработки резанием, ограничивая ее в ряде случаев чистовыми, отделочными операциями.

Снижение трудоемкости механической обработки заготовок, достигаемое рациональным выбором способа их изготовления, обеспечивает рост производства на тех же производственных площадях без существенного увеличения оборудования и технологической оснастки. Наряду с этим рациональный выбор способов изготовления заготовок применительно к различным производственным условиям определяет степень механизации и автоматизации производства.

Машиностроение является крупнейшим потребителем металла. Так, в прошедшей пятилетке в машиностроении было использовано 40% от общего выпуска металлопроката и свыше 77% от общего выпуска чугуна, стали и цветных металлов, при этом около 53% массы металла отошло в отходы, в том числе и безвозвратные.

Учитывая существенное значение в технологии производства повышения качественных показателей изготовления заготовок, в «Основных направлениях экономического и социального развития СССР на 1981 - 1985 годы и на период до 1990 года», утвержденных на XXVI съезде КПСС, указано на необходимость ускоренного развития специализированных мощностей по производству отливок и штамповок путем реконструкции на новой технической основе действующих и строительства новых литейных и кузнечно-штамповочных заводов и цехов, повышения качества и точности отливок и штамповок за счет внедрения в производство металлосберегающих (безотходных и малоотходных) технологических процессов.

Последовательное использование передовых технологических процессов изготовления заготовок обеспечит необходимую материальную базу для опережающего развития машиностроения, создаст предпосылки для коренного улучшения использования материалов при резком сокращении их потерь и отходов и доведении среднего коэффициента использования металлопередела до 0,59…0,6.

Выбор вида заготовки для дальнейшей механической обработки во многих случаях является одним из весьма важных вопросов разработки процесса изготовления детали. Правильный выбор заготовки - установление ее формы, размеров припусков на обработку, точности размеров (допусков) и твердости материала, т. е. параметров, зависящих от способа ее изготовления, - обычно весьма сильно влияет на число операций или переходов, трудоемкость и в итоге на себестоимость процесса изготовления детали. Вид заготовки в большинстве случаев в значительной степени определяет дальнейший процесс обработки.

Таким образом, разработка процесса изготовления детали может идти по двум принципиальным направлениям:

  • получение заготовки, приближающейся по форме и размерам к готовой детали, когда на заготовительные цехи приходится как бы значительная доля трудоемкости изготовления детали и относительно меньшая доля приходится на механические цехи,
  • получение грубой заготовки с большими припусками, когда на механические цехи приходится основная доля трудоемкости и себестоимости изготовления детали.

В зависимости от типа производства оказывается рациональным то или иное из указанных направлений или какое-либо промежуточное между ними. Первое направление соответствует, как правило, массовому и крупносерийному производству, так как дорогостоящее современное оборудование заготовительных цехов, обеспечивающее высокопроизводительные процессы получения точных заготовок, экономически оправдано лишь при большом объеме выпуска изделий. Второе направление типично для единичного или мелкосерийного производства, когда применение указанного дорогого оборудования в заготовительных цехах неэкономично. Не следует, однако, изложенное понимать так, что в пределах единичного и серийного производства не могут быть достигнуты целесообразные решения об удовлетворительном качестве заготовок. Наоборот, экономически целесообразное для всякого производства качество заготовок может быть всегда заранее предопределено при правильном подходе к их выбору, а, следовательно, и к установлению способа их изготовления.

Основными видами заготовок в зависимости от назначения деталей являются:

  • отливки из черных и цветных металлов;
  • заготовки из металлокерамики;
  • кованые и штампованные заготовки;
  • заготовки, штампованные из листового металла;
  • заготовки из проката; сварные заготовки;

Отливки из черных и цветных металлов (рис. 36) выполняют различными способами. Для заготовок простых форм с плоской поверхностью в условиях единичного и мелкосерийного производства применяют литье в открытые земляные формы, для крупных заготовок - литье в закрытые формы. Ручную формовку в опоках по моделям или шаблонам применяют для мелких и средних отливок деталей, имеющих форму тел вращения. В настоящее время получает распространение литье в жидкие быстротвердеющие смеси. Этот способ исключает необходимость сушки форм в печах. В серийном н массовом производстве применяют машинную формовку по деревянным или металлическим моделям. Отливки сложной конфигурации изготовляют в формах, которые собирают из стержней по шаблонам и кондукторам.

Отливки сложных форм из труднообрабатываемых резанием сплавов изготовляют по выплавляемым моделям , при этом обеспечивается точность размеров по 12…11-му квалитетам и шероховатости поверхности R а =6,3…1,6 мкм. По выплавляемым моделям изготовляют отливки как из черных, так и из цветных сплавов, причем в производстве отливок из сплавов, заливка которых должна производиться в холодные формы, применяют сочетание литья по выплавляемым моделям и способа гипсовой формовки.

Точные отливки с небольшими припусками на механическую обработку получают при литье в оболочковые формы . Этот способ, широко распространенный в настоящее время, основан на свойстве термореактивной смолопесчаной смеси принимать форму подогретой металлической модели и образовывать плотную и быстротвердеющую оболочку. Этот способ литья расширяет возможности автоматизации. Отливки имеют точность размеров по 14…12-му квалитетам и шероховатость R а =0,4 мкм.

К прогрессивным способам изготовления литых заготовок относится способ литья в металлические формы (кокили), который исключает процесс формовки, обеспечивает благоприятные условия охлаждения, а также простоту удаления отливок из формы. Перспективно применение податливых металлических форм, изготовляемых из пакетов чистовой, стали, а также тонкостенных водоохлаждаемых форм, в которых рабочая полость изготовляется в виде сменной штамповки. Применение вакуумного отсасывания при кокильном литье расширяет область его использования для изготовления тонкостенных корпусных деталей из алюминиевых и магниевых сплавов, а заливка в открытую форму с последующим выжиманием при смыкании полуформ (метод книжной» формовки) позволяет получать крупногабаритные тонкостенные отливки.

Для изготовления отливок с мелкозернистой структурой металла и повышенными механическими свойствами применяют способ центробежного литья , который получил наибольшее распространение при изготовлении отливок деталей, имеющих форму тел вращения (втулок, груб и т. д.), с точностью по 12-му квалитету.

Для изготовления заготовок деталей сложной конфигурации успешно применяют способ литья под давлением . Прочность отливок, изготовленных этим способом, на 30% выше прочности отливок, изготовленных литьем в земляные формы. Этот способ широко применяют в серийном и массовом производстве при изготовлении небольших деталей сложной формы. Современные автоматы для литья под давлением отливок массой до 300 г обеспечивают производительность до 6000…8000 отливок в час. Шероховатость поверхности заготовок R а =2,5…0,32 мкм.

Заготовки из металлокерамики изготовляют из порошков, различных металлов или из смеси их с порошками, например, графита, кремнезема, асбеста и др. Этот вид заготовок применяют для производства деталей, которые не могут быть изготовлены другими методами - из тугоплавких элементов (вольфрама, молибдена, магнитных материалов и пр.), из металлов, не образующих сплавов, из материалов, состоящих из смеси металла с неметаллами (медь - графит), и из пористых материалов.

Способ получения металлокерамических материалов основан на прессовании тонких металлических порошков в требуемой смеси в пресс-формах под давлением 100…600 МПа и последующем спекании при температуре немного ниже температуры плавления основного компонента. Этот способ носит название порошковой металлургии, и с его помощью изготовляют подшипники скольжения (с антифрикционными свойствами ), тормозные диски (с фрикционными свойствами ), самосмазывающиеся втулки, в которых поры на 20…30% объема под давлением заполняются смазкой (пористые), а также детали для электро- и радиотехнической промышленности (магниты). Достоинством порошковой металлургии также является возможность изготовления деталей, не требующих последующей механической обработки.

Кованые и штампованные заготовки (рис. 37) изготовляют различными способами, технологические характеристики которых приведены в табл. 5.

Так, для получения заготовок деталей в единичном и мелкосерийном производстве применяют ковочные молоты и гидравлические ковочные прессы. Заготовки характеризуются сравнительно грубым приближением к форме готовой детали и требуют больших затрат на последующую механическую обработку.

Для большего приближения формы заготовки к форме готовой детали в мелкосерийном производстве применяют подкладные штампы . Заготовку, предварительно выполненную свободной ковкой с помощью универсального кузнечного инструмента, помещают в подкладной штамп, где она принимает форму, более близкую к форме готовой детали.

В серийном и массовом производстве заготовки изготовляют на штамповочных молотах и прессах в открытых и закрытых штампах. В первом случае образуется облой, т. е. отход лишнего металла в результате истечения; облой компенсирует неточность в массе исходной заготовки. Во втором случае облой отсутствует, следовательно, расход металла на заготовку меньше. Технологическими процессами, интенсифицирующими технологию штамповки, являются: штамповка заготовок из центробежных отливок и отливок в кокиль, штамповка методом выдавливания в обычных закрытых и разъемных штампах, безоблойная штамповка, штамповка из периодического проката, объемная штамповка из заготовок, полученных непрерывной разливкой стали.

Штамповка заготовок, отлитых методами центробежного и кокильного литья , предназначается для изготовления заготовок типа пустотелых цилиндров, минуя процессы разливки стали в слитки и последующую их прокатку и расковку. При этом процессе заготовки для последующей штамповки или раскатки отливаются на центробежной машине, а затем в горячем виде (при t=1250…1300°С) извлекаются из кокиля или центробежной машины.

Метод выдавливания особенно эффективен при совмещении его с индукционным нагревом для изготовления таких крупных заготовок, как валы, валки, роторы и т. п.

Значительно большую экономию металла можно получить при внедрении прогрессивных технологических процессов штамповки на кривошипных горячештамповочных прессах, штамповки (горячего выдавливания) в цельных и разъемных матрицах, малоотходной штамповки (безоблойной и с противодавлением). Горячее выдавливание является эффективным процессом получения штамповок разнообразной конфигурации, чаще всего в виде стержней с фланцами различной формы, деталей с отростками и т. п., причем выдавливание как операция горячей штамповки часто применяется в качестве заготовительной операции для распределения металла в соответствии с формой детали, благодаря чему сокращаются отходы в облой. Еще более эффективна разновидность технологической схемы выдавливания - штамповка выдавливанием в разъемных матрицах . Наличие второй линии разъема позволяет получать поковки с отростками и поднутрениями, близкими к конфигурации детали. Сущность процесса малоотходной штамповки заключается в получении точных заготовок (преимущественно тел вращения) без облоя в закрытых штампах. Избыток металла (неизбежный при существующих способах резки заготовок) отводится в специальные полости штампа. Одной из разновидностей процесса является штамповка шестерен в штампах с клиновой облойной канавкой.

Существенным фактором экономии проката является применение для ковки и объемной штамповки заготовок, полученных непрерывной разливкой стали, не требующих высокой степени укова; причем эти заготовки без предварительной прокатки можно штамповать.

Из других прогрессивных технологических процессов, внедрение которых обеспечивает более эффективное использование металла, относится вальцовка заготовок на ковочных вальцах , в том числе многоклетьевых и автоматизированных, на которых заготовка требуемого переменного сечения может быть получена за один проход; радиальное обжатие (редуцирование), осуществляемое как в горячем, так и в холодном состоянии; раскатка, применение периодического проката для предварительного формообразования заготовок под штамповку.

Одним из способов производства заготовок из отливок является метод виброштамповки . Преимуществом метода является создание лучших условий деформирования в связи с уменьшением внешнего трения и скорости деформации. Штамповка может осуществляться в одно- и многоручьевых штампах; мелкие заготовки штампуют в многоштучных штампах.

Для получения заготовок из пруткового материала высадкой используют горизонтально-ковочные машины. Этот способ производителен и экономичен. Фасонные, а также пустотелые заготовки цилиндрической формы штампуют на гидравлических прессах. Пустотелые заготовки изготовляют прошивкой отверстия с последующей протяжкой через кольцо или высадкой, а болты, заклепки и подобные детали – на фрикционных винтовых прессах в специальных сборных штампах с разъемными матрицами. При штамповке на фрикционных прессах достигаются высокая точность изготовленных заготовок, уменьшение расхода материала и высокая производительность. Так, при изготовлении заклепок производительность прессов составляет до 1000 шт. в час.

Для изготовления заклепок и других подобных деталей в массовом производстве применяют также холодновысадочные пресс-автоматы. Производительность этих прессов составляет 400 шт. в минуту и более. Опали, полученные холодной высадкой из калиброванного проката, сличаются большой точностью (8-й квалитет). Для получения заготово к периодического профиля или для вытяжки металла в продольном и поперечном сечениях используют ковочные вальцы . Профиль переменного сечения получают, пропуская заготовку через ручей вальцов, сложный профиль - пропуская заготовку через несколько профилированных ручьев.

Точность размеров и шероховатость поверхностей штампованных заготовок повышают холодной калибровкой и плоскостным или объемным проглаживанием (чеканкой). Плоскостную чеканку применяют для небольших участков заготовок, а объемную - для заготовок небольшого размера. Заготовки можно чеканить и в горячем состоянии, однако точность горячей чеканки ниже, чем холодной. Горячую чеканку применяют преимущественно для крупных штампованных готовок.

Штамповкой заготовок из листового металла можно получать изделия простой и сложной конфигурации: шайбы, втулки, сепараторы подшипников качения, баки, кабины автомобилей и т. д. Для этих изделий характерна почти одинаковая толщина стенок, мало отличающаяся от толщины исходного материала (рис. 38).

Холодной листовой штамповкой могут быть получены заготовки на низкоуглеродистой стали, пластичной легированной стали, меди, латуни (с содержанием меди более 60% ), алюминия и некоторых его сплавов, а также из других пластичных листовых материалов толщиной от десятых долей миллиметра до 6…8 мм. Заготовки, получаемые из листа холодной штамповкой, отличаются высокой точностью размеров, во многих случаях не нуждаются в последующей механической обработке и поступают непосредственно на сборку.

Горячей листовой штамповкой могут быть получены заготовки из материала толщиной свыше 8…10 мм, а при низкой пластичности - из материала меньших толщин для изготовления деталей корпусов кораблей, цистерн, котлов, химических машин, аппаратов и др.

Совершенствование технологических процессов листоштамповочного производства в целях более эффективного использования листового проката осуществляется в трех направлениях: замена листа широким рулоном, применение листа без припусков и положительных допусков на габариты и всемерная замена штампованных деталей деталями, изготовленными из гнутых профилей.

Дальнейшее развитие процессов холодной листовой штамповки основывается на применении целевого, комбинированного и универсального оборудования с использованием специальной оснастки, а именно: универсальных блоков для пакетных штампов, электромагнитных блоков для пластинчатых штампов, универсальных штампов для геометрически подобных деталей и для штамповки по элементам, пинцетных штампов для вырубки крупногабаритных деталей и для групповой штамповки, штампов с использованием резины, жидкости и другой эластичной среды и упрощенных штампов (ленточных, литых, пластмассовых, с использованием бетона, дерева и т. д.).

При изготовлении крупногабаритных листовых деталей в настоящее время широко применяют беспрессовую штамповку, называемую гидравлической вытяжкой и основанную на использовании статического гидравлического давления, электрогидравлического эффекта и энергии подводного взрыва взрывчатых веществ. Гидравлическая вытяжка может быть использована для формообразования деталей из алюминиевых сплавов толщиной до 5 мм и стали толщиной до 3 мм. Высокое давление порядка 20…25 МПа передается либо непосредственно жидкостью, либо посредством резиновой диафрагмы или мешка. Гидравлическая вытяжка отличается более равномерным распределением напряжений в металле, чем при вытяжке пуансонами, и создает более благоприятные условия для формообразования с меньшими утонениями в процессе вытяжки.

К процессам холодной обработки давлением относятся холодная высадка и объемная штамповка выдавливанием . Высадку применяют для образования местных утолщений требуемой формы путем перераспределения и перемещения объема металла. Выдавливание применяют для изготовления полых деталей, деталей меньшей площадью поперечного сечения из толстой заготовки за счет истечения металла в зазор между матрицей и инструментом. В зависимости от направления перемещения металла по отношению к инструменту различают три шин выдавливания: прямое - металл течет в направлении рабочего движения инструмента, обратное - обратно рабочему движению и комбинированное - сочетание прямого и обратного видов. Прямое выдавливание применяют для изготовления сплошных деталей, а иноке пустотелых деталей типа гильз и труб. Обратное выдавливание применяют исключительно для получения пустотелых деталей. Комбинированное-для изготовления деталей сложной формы: с фигурным дном, с дном, имеющим отростки, с дном, расположенным внутри полой детали, и т. п.

Для формообразования, калибровки, отделки поверхности деталей машин и их упрочнения при обработке давлением в холодном состоянии применяют процессы бесштамповочной обработки, основанные на пластической деформации металлов. К ним относятся накатка шестерен, шлиц и резьб, накатка и раскатка поверхностей шариками п роликами. Эти способы позволяют осуществить размерно-чистовую обработку , улучшить микрогеометрию поверхностей, в ряде случаев упразднив отделочную обработку.

Находит применение также метод обкатки роликами (гидроспининг), успешно заменяющий не только обработку резанием и давильные работы, но и вытяжку. Этот способ заключается в постепенном обжатии роликами листовой, штампованной или литой заготовки, полученной на принудительно вращающейся оправке. Большие давления на ролики, достигающие 25 МПа, создаваемые гидравлическим приводом, позволяют весьма производительно обжимать полые детали цилиндрической, конической н параболической форм, получать летали сложной конфигурации с большим перепадом сечений с точностью в пределах 11-го квалитета и шероховатостью поверхности R а = 0,8…0,4 мкм.

Все операции листовой штамповки можно разделить на разделительные (отрезка, вырубка, пробивка, зачистка), в ходе которых одну часть заготовки отделяют от другой, и формоизменяющие (гибка, вытяжка, обжим, отбортовка, рельефная формовка, формовка), в которых одна часть заготовки перемещается относительно другой без разрушения заготовки (в пределах пластических деформаций).

Исходный толстый лист разделяют на мерные заготовки преимущественно газовой резкой.

Тонкие листы разделяют на заготовки обычно отрезкой на гильотинных и дисковых ножницах.

Горячую листовую штамповку производят преимущественно на гидравлических листоштамповочных и фрикционных винтовых прессах, реже - на кривошипных листоштамповочных прессах. Из специального оборудования для обработки листов в горячем состоянии следует отметить трех- и четырехвалковые гибочные вальцы, предназначенные для гибки листа в обечайку реверсивным прокатыванием листа между постепенно сближающимися валками.

Нагрев перед штамповкой ведут обычно в пламенных камерных печах периодического действия или в методических печах непрерывного действия. Прогрессивен индукционный электронагрев, при котором продолжительность процесса сокращается в 5…6 раз, а толщина слоя окалины уменьшается в 2…3 раза по сравнению со слоем окалины, полученным в пламенных печах. Резко повышается точность штамповки, создаются возможности автоматизации процесса, значительно улучшаются условия труда в прессовых (кузнечно-штамповочных) цехах.

Заготовки из круглого проката для валов в большинстве случаев более целесообразны, чем кованые или штампованные заготовки. Однако если масса заготовки из проката превышает массу штамповки более чем на 15%, лучше применять штампованные заготовки.

Изготовление заготовок из труб также является одним из рациональных способов. Несмотря на то, что тонна горячего проката стоит в среднем в 1,5 раза меньше, чем тонна труб, тем не менее экономия металла при производстве деталей из труб по сравнению с изготовлением из круглого проката может покрыть разницу в стоимости. Исключение может быть сделано только для деталей, которые подвергают дальнейшей неоднократной обработке (сверлению, фрезерованию и др.), и, если коэффициент использования материала ниже 0,5.

Максимального подобия конструктивных форм и размеров заготовок готовым деталям можно достигнуть применением специальных профилей металла. Применение периодического проката , т. е. проката с максимальным подобием заготовки и детали, обеспечивает повышение коэффициента использования металла при штамповке в среднем на 10…15% благодаря сокращению потерь на облой, содействуя одновременно повышению производительности труда как в заготовительных, так и в механообрабатывающих цехах. На рис. 39 приведены схемы периодической прокатки различных заготовок: распределительного вала (α); шаров, изготовленных методом поперечной раскатки (б). В приведенном примере масса заготовок из обычных профилей: распределительного вала - 7,95 кг и шаров 300 мм - 0,164 кг, а при использовании периодического проката - соответственно 6,32 и 0,125 кг, что составляет экономию металла 13 и 24%.

Из готового профильного проката заготовки изготовляют преимущественно в массовом производстве. Во многих случаях этот способ не требует применения механической обработки или ограничивает ее отделочными операциями.

Сварные заготовки позволяют получать изделия такой конфигурации, которая обычно получается в результате литья или обработки резанием. В современном машиностроении часто применяют штампосварные заготовки (рис. 40). Замена деталей, полученных из отливок и изготовленных обработкой резанием, штампосварными значительно снижает себестоимость.

Наряду со штампосварными применяют также и сварно-литые заготовки , например, при изготовлении заготовок для корпусных деталей, отличающихся большим разнообразием конструктивных форм, размеров, массы и материалов. Заготовку делят на ряд простейших частей, получаемых литьем, а затем соединяют их сваркой. Так изготовляют траверсы прессов, статоры турбин, станины станков и др. Этот вид заготовок резко снижает трудоемкость изготовления и металлоемкость изделия.

Применяют также заготовки из штампованных и литых частей, соединенных сваркой.

Заготовки из неметаллических материалов . К неметаллическим материалам, широко применяемым в машиностроении, относятся: пластические массы, древесина, резина, бумага, асбест, текстиль, кожа и др. Неметаллические материалы, обеспечивая необходимую прочность при небольшой массе изготовляемых из них деталей, придают деталям необходимые свойства: химическую устойчивость (к воздействию растворителей), водо-, газо- и паронепроницаемость, высокие изоляционные свойства и др.

Пластическими массами называют материалы, которые на определенной стадии их производства приобретают пластичность, т. е. способность под воздействием давления принимать соответствующую форму и в дальнейшем сохранять ее. В зависимости от химических свойств исходных смолообразных веществ пластические массы, получаемые на их основе, делят на две основные группы:

  • термореактивные пластические массы на основе термореактивных смол, отличающиеся тем, что при действии повышенных температур они претерпевают ряд химических изменений и превращаются в неплавкие и практически нерастворимые продукты;
  • термопластичные массы (термопласты), получаемые на основе термопластичных смол и отличающиеся тем, что при нагревании они размягчаются, сохраняя плавкость, растворимость и способность к повторному формованию.

Разнообразие физико-химических и механических свойств и простота переработки в изделия обусловливают широкое применение различных видов пластических масс в машиностроении и других отраслях народного хозяйства. Сравнительно небольшая плотность (1000…2000 кг/м3), значительная механическая прочность и высокие фрикционные свойства позволяют в ряде случаев применять пластические массы в качестве заменителей, например, цветных металлов и их сплавов - бронзы, свинца, олова, баббита и т. п., а при наличии некоторых специальных свойств (например, коррозионная стойкость) пластмассы можно использовать и в качестве заменителей черных металлов. Высокие электроизоляционные свойства способствуют применению пластических масс в электро- и радиопромышленности в качестве заменителей таких материалов, как фарфор, эбонит, шеллак, слюда, натуральный каучук и многие другие. Хорошая химическая стойкость при воздействии растворителей и некоторых окислителей, водостойкость, газо- и паронепроницаемость позволяют применять пластические массы как технически важные материалы в автотракторной, судостроительной и других отраслях промышленности.

Детали из пластических масс получают прессованием, литьем под давлением и литьем в формы. Наиболее распространенным способом получения деталей из пластических масс является способ горячего прессования при необходимом давлении и температуре. В качестве основного оборудования для прессования пластмасс обычно применяют гидравлические прессы. Однако в некоторых случаях можно применять и другие типы прессов, например фрикционные, винтовые. Прессование производят в металлических пресс-формах, устанавливаемых на прессах. Пресс-формы являются основным видом оснастки в производстве изделий из пластических масс. Во время прессования пресс-формы находятся в очень неблагоприятных эксплуатационных условиях. Они воспринимают многократные силовые нагрузки (давление пресса достигает 20…30 МПа, а иногда 60…80 МПа), систематическое воздействие высоких температур (до 190°С) и агрессивное коррозионное воздействие выделяющихся в процессе прессования продуктов химических превращений.

Важным промышленным способом производства деталей из пластмасс является способ литья под давлением . Он во многом сходен со способом литья под давлением металлов. Сущность его заключается в следующем: в загрузочные приспособления специальных машин помещают пластическую массу, затем подают их в обогревающее устройство, где пластмасса расплавляется и под действием поршня (плунжера), передающего давление, впрыскивается в пресс-форму. Машины для литья под давлением пластмасс высокопроизводительны: до 12…16 тыс. шт. за смену. Этим способом можно изготовлять различные детали со сложными резьбами и профилями, тонкостенные детали и т. п. Литье в формы применяют в тех случаях, когда детали изготовляют из связующего без наполнителя. Этот способ применяют также для получения различных литых деталей из термореактивных пластмасс, например, литого карболита, неолейкорита, литого резита, а также из термопластичных материалов - органического стекла, полистирола и др.

Детали из слоистых пластиков широко распространены в машиностроении. Например, текстолитовые зубчатые колеса отличаются от металлических бесшумностью работы и устойчивостью против влияния различных агрессивных сред. В ряде случаев текстолитовые зубчатые колеса почти совсем вытеснили зубчатые колеса из цветных металлов. Их применяют для передачи вращения от электродвигателей в быстроходных металлообрабатывающих станках, устанавливают на распределительных валах двигателей внутреннего сгорания. В химической промышленности текстолитовые зубчатые колеса применяют в различных аппаратах и приборах, где они гораздо лучше, чем зубчатые колеса из бронзы и латуни, сопротивляются различным агрессивным воздействиям. Помимо зубчатых колес из текстолита изготовляют ролики, кольца и т. п.

Древесина различных пород, являющаяся сравнительно дешевым материалом, применяется во многих отраслях современного машиностроения. Например, в сельскохозяйственном машиностроении и автотракторостроении используется древесина сосны, ели, кавказской пихты, лиственницы, дуба, бука, ясеня, березы, клена, граба, ильмы, вяза. Из древесины твердых лиственных пород и лиственницы изготовляют ответственные детали сельскохозяйственных машин, подвергающиеся большим нагрузкам.

Древесные материалы применяют в машиностроении как конструкционные материалы, главным образом в виде шпона, клееной фанеры, пельнопрессованной древесины и древесных пластиков.

Для повышения устойчивости древесины против гниения ее специально обрабатывают: сушат на воздухе и в специальных сушильных камерах, а также пропитывают медным купоросом, хлористым цинком или креозотом и окрашивают.

Из древесных материалов методами холодного и горячего гнутья можно получать изделия сложной криволинейной формы. Метод холодного гнутья заключается в том, что на шаблоне выгибают и запрессовывают заготовку в виде набора тонких деревянных пластинок, покрытых клеем, без подогрева. При горячем гнутье заготовку предварительно проваривают или пропаривают, вследствие чего она приобретает пластичность, затем выгибают на шаблоне и в таком положении зажимают и помещают в сушильную камеру.

Наряду с обычной древесиной (так называемым массивом) в машиностроении применяют фанеру и слоистые древесные материалы. Фанера представляет собой листовой материал, изготовленный путем склеивания между собой нескольких тонких деревянных листов (шпона). Для изготовления нагруженных деталей применяют многослойную, или плиточную, фанеру толщиной 25…30 мм.

Тонкие листы (шпон), пропитанные специальными смолами и подвергнутые горячему прессованию, образуют так называемые древесно-слоистые пластики , широко применяемые в текстильном и электротехническом машиностроении, а также в качестве заменителя подшипников из цветных металлов в гидравлических машинах, механизмах, работающих в абразивной среде.

Механическую обработку изделий из древесины производят на металлорежущих и деревообрабатывающих станках.

Под заготовкой понимается изделие, из которого изменением формы, размеров, свойств поверхности и (или) материала изготавливают деталь. Для получения детали из заготовки ее подвергают механической обработке, в результате которой удалением слоя материала с отдельных (или всех) ее поверхностей получают заданные конструктором на чертеже геометрическую форму, размер и свойства поверхностей детали. Удаляемый слой материала называется припуском. Он необходим для надежного обеспечения геометрических характеристик и чистоты рабочих поверхностей детали. Величина припуска зависит от глубины дефектов поверхности и определяется видом и способом получения заготовки, ее массой и габаритами.

Кроме припусков при механической обработке удаляются напуски, которые составляют часть объема заготовки, добавляемую иногда для упрощения технологического процесса ее получения.

Заготовки простой конфигурации (с напусками) дешевле, так как не требуют при изготовлении сложной и дорогой технологической оснастки. Однако такие заготовки требуют последующей трудоемкой обработки и повышенного расхода материала. Очевидно, что для каждого конкретного метода изготовления заготовки существует оптимальная точность и оптимальный объем выпуска.

Заготовительное производство является составной частью любого автотракторного завода, образуя первый технологический передел.

Заготовки принято различать по виду, отражающему характерные особенности базового технологического метода их изготовления.

Выделяют следующие виды заготовок:

получаемые литьем (отливки);

получаемые обработкой давлением (кованые и штампованные заготовки);

заготовки из проката (получаемые отрезкой);

сварные и комбинированные заготовки;

получаемые методами порошковой металлургии.

Заготовка может быть штучной (мерной) или непрерывной, например пруток горячекатаного проката, из которого разрезкой могут быть получены отдельные штучные заготовки.

Развитие машиностроения привело к появлению заготовок, получаемых из конструкционной керамики.

Заготовка каждого вида может быть изготовлена одним или несколькими способами, родственными базовому. Так, например, отливка может быть получена литьем в песчаные или оболочковые формы, в кокиль и т.д.

Литьем получают заготовки фактически любых размеров простой и очень сложной конфигурации почти из всех металлов и сплавов, а также и из других материалов (пластмассы, керамики и т.д.). Качество отливки зависит от условий кристаллизации металла в форме, определяемых способом литья. В некоторых случаях внутри стенок отливок возможно образование дефектов (усадочные рыхлоты, пористость, трещины, получающиеся в горячем или холодном состоянии), которые часто обнаруживаются только после черновой механической обработки.

Обработкой металлов давлением получают кованые и штампованные заготовки, а также машиностроительные профили. Ковка применяется в единичном и мелкосерийном производстве, а также при изготовлении крупных, уникальных заготовок и заготовок с особо высокими требованиями к объемным свойствам материала. Штамповка позволяет получить заготовки близкие по конфигурации к готовой детали. Механические свойства заготовок, полученных обработкой давлением, выше, чем литых. Машиностроительные профили изготовляют прокаткой, прессованием, волочением.

Заготовки из проката применяют в единичном и серийном производствах. Прокат выбранного профиля резкой превращают в штучные заготовки, из которых последующей механической обработкой изготовляют детали. Совершенство заготовки определяется близостью выбранного профиля проката к поперечному сечению детали (с учетом припусков на обработку).

Сварные и комбинированные заготовки изготовляют из отдельных составных элементов, соединяемых между собой с помощью различных способов сварки. В комбинированной заготовке, кроме того, каждый составной элемент представляет собой самостоятельную заготовку соответствующего вида (отливка, штамповка и т.д.), изготовленную выбранным способом по самостоятельному технологическому процессу. Сварные и комбинированные заготовки значительно упрощают создание конструкций сложной конфигурации. Неправильная конструкция заготовки или неверная технология сварки могут привести к дефектам (коробление, пористость, внутренние напряжения), которые трудно исправить механической обработкой.

Заготовки, получаемые методами порошковой металлургии, по форме и размерам могут соответствовать готовым деталям и требуют незначительной, часто только отделочной обработки.

Заготовки из конструкционной керамики применяют для теп-лонапряженных и (или) работающих в агрессивных средах деталей.

Заготовку перед первой технологической операцией процесса изготовления детали называют исходной.

Поступающие на обработку заготовки должны соответствовать утвержденным техническим условиям. Поэтому их подвергают техническому контролю по соответствующей инструкции, устанавливающей метод контроля, периодичность, количество проверяемых заготовок в процентах к выпуску и т.д. Обычно проверяют химический состав, механические свойства материала, структуру, наличие внутренних дефектов, размеры, массу заготовки.

У заготовок сложной конфигурации с отверстиями и внутренними полостями (типа корпусных деталей) в заготовительном цехе проверяют размеры и расположение поверхностей. Для этого заготовку устанавливают на станке, используя ее технологические базы, имитируя схему установки, принятую для первой операции обработки. Отклонения размеров и формы поверхностей должны соответствовать требованиям чертежа заготовки. Заготовки должны быть выполнены из материала, указанного на чертеже, обладать соответствующими ему механическими свойствами, не должны иметь внутренних дефектов (для отливок - рыхлоты, раковины, посторонние включения; для поковок - пористость и расслоения, трещины по шлаковым включениям, «шиферный» излом, крупнозернистость, шлаковые включения; для сварных конструкций - непровар, пористость металла шва, шлаковые включения).

Дефекты, влияющие на прочность и внешний вид заготовки, подлежат исправлению. В технических условиях должны быть указаны вид дефекта, его количественная характеристика и способы исправления (вырубка, заварка, пропитка различными химическими составами, правка).

Поверхности отливок должны быть чистыми и не должны иметь пригаров, спаев, ужимин, плен, намывов и механических повреждений. Заготовка должна быть очищена или обрублена, места подвода литниковой системы, заливы, заусенцы и другие дефекты должны быть зачищены, удалена окалина. Особенно тщательно должны быть очищены полости отливок. Необрабатываемые наружные поверхности заготовок при проверке по линейке не должны иметь отклонений от прямолинейности более заданных. Заготовки, у которых отклонение от прямолинейности оси (кривизна) влияет на качество и точность работы машины, подлежат обязательному естественному или искусственному старению согласно технологическому процессу, обеспечивающему снятие внутренних напряжений, и правке.

Отмеченные на чертеже заготовки базы для механической обработки должны служить исходными базами при изготовлении и проверке технологической оснастки (моделей и приспособлений), должны быть чистыми и гладкими, без заусенцев, остатков литников, прибылей, выпоров, литейных и штамповочных уклонов.

В машиностроении применяют следующие методы получения за­готовок:

1.1. Литье в песчаные формы. Масса заготовок - до 10 тонн. Минимальная толщина стенки - 3-4 мм. В отливке можно получать отверстия и полости.

Недостатки - низкая точность изготовления, большой дефектный слой, вы­сокая шероховатость.

Обычно этот способ применяют при получении заготовок крупногабарит­ных корпусных деталей.

1.2. Литье в металлические формы (кокиль). Этот способ применяется при изготовлении большого числа одинаковых отливок из чугуна, стали, цвет­ных сплавов.

Один кокиль можно использовать до нескольких тысяч раз. Кокиль изготавливается из стали или чугуна.

Достоинства - высокое качество отливок, малые припуски на меха­ническую обработку, низкая шероховатость заготовки, возможность автоматизации процесса получения заготовок.

1.3. Центробежное литье. Получают заготовки деталей типа тел вращения. Этим способом можно получить заготовки из сочетания различных мате­риалов (чугун - бронза, сталь - чугун и т.д.) Благодаря центробежным силам заготовки имеют более высокую плот­ность и мелкозернистую структуру, что приводит к улучшению механиче­ских свойств. Недостаток - большой разброс размеров внутренних полостей.

1.4. Литье под давлением. Получают отливки из цветных сплавов. Заготов­ки отливаются в специальный кокиль.

Достоинства - малая шероховатость и относительно высокая точ­ность.

1.5. Литье по выплавляемым моделям. Чаще всего применяют для изготов­ления заготовок из труднообрабатываемых материалов. Получают точные отливки с низкой шероховатостью.

1.6. Литье в оболочковые формы. Точные отливки в массовом производст­ве.

2. Ковка и штамповка.

Существует два способа ковки - свободная ковка и штамповка.

Свободную ковку производят или ударом на молотах или давлением на прессах. Свободной ковкой получают заготовки от самых маленьких до нескольких сотен тонн.

Недостатки - низкие производительность и точность.

Свободную ковку применяют в единичном и мелкосерийном производствах. При серийном и массовом производствах применяют штамповку.

Штамповка аналогична ковке, но «течение» металла при этом огра­ничено формой - штампом. При этом достигается более высокая производительность, чем при свободной ковке (до нескольких сотен раз) и точность получаемых заготовок.

Штамповка бывает горячей и холодной.

Наиболее широко для получения заготовок в машиностроении применяют следующие методы: литье, обработка металла давлением и сварка, а также комбинация этих методов.

Каждый из методов содержит большое число способов получения заготовок.

Метод – это группа технологических процессов, в основе которых лежит единый принцип формообразования.

Литье – получение заготовок путем заливки расплавленного металла заданного химического состава в литейную форму, полость которой имеет конфигурацию заготовки.

Обработка давлением – технологические процессы, которые основаны на пластическом формоизменении металла.

Сварка – технологический процесс получения неразъемных соединений из металлов и сплавов в результате образования атомно-молекулярных связей между частицами соединяемых заготовок.

При выборе метода необходимо ориентироваться в первую очередь на материал и требования к нему с точки зрения обеспечения служебных свойств изделия (литье – чугун, стали с обозначением Л).

Особо ответственные детали, к которым предъявляются высокие требования по размеру зерна, направлению волокон, а также по уровню механических свойств, всегда следует изготавливать из заготовок, полученной обработкой давлением.

Выбор способа получения заготовки сложная задача.

Способ получения заготовки должен быть экономичным, обеспечивающим высокое качество детали, производительным, нетрудоемким.

Основные факторы, влияющие на выбор способа получения заготовки.

Характер производства .

Для мелкосерийного и единичного производства характерно использование в качестве заготовок горячекатаного проката, отливок, полученных в песчано-глинистых формах, поковок, полученных ковкой.

Это обуславливает большие припуски, значительный объем последующей механической обработки, повышение трудоемкости.

В условиях крупносерийного и массового производств рентабельны способы получения заготовок: горячая объемная штамповка; литье в кокиль, под давлением, в оболочковые формы по выплавляемым моделям.

Применение этих способов позволяет значительно сократить припуски, снизить трудоемкость изготовления детали.

Повышение точности формообразующих процессов, выбор наиболее точных и прогрессивных способов получения заготовок на базе увеличения серийности производства является одним из важнейших резервов повышения технического уровня производства.

Материалы и требования, предъявляемые к качеству детали

Материалы должны обладать необходимым запасом определенных технологических свойств – ковкостью, штампуемостью, жидкотекучестью, свариваемостью, обрабатываемостью.

Для деформируемых материалов необходимым технологическим свойством является технологическая пластичность. Особо жесткие требования по технологической пластичности предъявляются к сплавам, из которых детали получают холодной обработкой давлением – выдавливанием, вытяжкой, гибкой, формовкой.

Если металл обладает низкой жидкотекучестью, высокой склонностью к усадке, то не рекомендуется применять литье в кокиль, под давлением, так как из-за низкой податливости металлической формы могут возникнуть литейные напряжения, коробление отливки, трещины. Целесообразно применять оболочковое литье и литье в песчано-глинистые формы.

Для ответственных, тяжело нагруженных деталей (валы, шестерни, зубатые колеса), для которых предъявляются определенные требования к качеству металла и к физико-механическим свойствам – целесообразно использовать поковки, так как в процессе деформирования создается мелкозернистая, направленная волокнистая структура, значительно повышающая физико-механические свойства материала.

Размеры, масса и конфигурация детали.

Удельная стоимость отливок и поковок растет с уменьшением их массы. Закономерность общая для всех способов получения заготовок и деталей, так как трудоемкость формообразования определяют общей площадью поверхностей, подлежащих обработке.

Размеры детали часто играют решающую роль. При литье по выплавляемым моделям, в кокиль, под давлением размеры отливки ограничены технологическими возможностями оборудования и инструмента.

Способом горячей объемной штамповки возможно получение поковок до 1000 кг.

Качество поверхности заготовок, обеспечение заданной точности.

Использование точных способов обеспечивает достаточную чистоту поверхности и высокую точность заготовок.

Совершенствование ковки и штамповки обеспечивают параметры шероховатости и точность размеров, соответствующих механической обработке и даже финишных операций.

Калибровка, холодное выдавливание обеспечивают получение готовых деталей (заклепки, гайки, болты).

Возможности имеющегося оборудования.

Учитывают при изготовлении заготовок способами центробежного литья, литья под давлением, горячей объемной штамповкой. Иногда это является определяющим моментом.

Например, наличие в кузнечном цехе ротационно-ковочных машин позволяет получить ступенчатые заготовки практически без механической обработки. То же – при наличии механических прессов двойного действия или гидравлических многоступенчатых прессов.

Мощность кузнечно-штамповочного оборудования определяет номенклатуру изготовления деталей.

1. ПРОИЗВОДСТВО ЗАГОТОВОК ЛИТЬЕМ

Общие сведения о литейном производстве

Сущность литейного производства заключается в изготовлении фасонных отливок путём заливки расплавленного металла в специальную форму, внутренняя поверхность которой полностью соответствует внешней конфигурации отливки. При охлаждении металл, залитый в форму, затвердевает и получается заготовка (отливка). Перед литейным производством стоит задача получения отливок с максимальным приближением их формы и размеров к форме и размерам готовой детали, при этом наиболее трудоёмкие операции механической обработки должны быть ограниченны только лишь чистовой обработкой и шлифованием. Отливки изготовляют в литейном цехе в литейных формах. В зависимости от количества раз использования формы для заливки металла различают две группы способов литья:

1. Литьё в формы одноразового применения:

Литьё в землю или в песчано-глинистые формы,

Литьё по выплавляемым моделям,

Литьё в оболочковые формы.

2. Литье в формы многоразового применения:

Литьё в кокиль,

Центробежное литьё,

Литьё под давлением.

Теория и практика технологии литейного производства на современном этапе позволяет получать изделия с высокими эксплуатационными свойствами. Отливки надежно работают в реактивных двигателях, атомных энергетических установках и других машинах ответственного назначения. Они используются в изготовлении строительных конструкций, металлургических агрегатов, морских судов, деталей бытового оборудования, художественных и ювелирных изделий.

Современное состояние литейного производства определяется совершенствованием традиционных и появлением новых способов литья, непрерывно повышающимся уровнем механизации и автоматизации технологических процессов, специализацией и централизацией производства, созданием научных основ проектирования литейных машин и механизмов.

Важнейшим направлением повышения эффективности является улучшение качества, надежности, точности и шероховатости отливок с максимальным приближением их к форме готовых изделий путем внедрения новых технологических процессов и улучшения качества литейных сплавов, устранение вредного воздействия на окружающую среду и улучшения условий труда.

Литье является наиболее распространенным методом формообразования.

Преимуществами литья являются изготовление заготовок с наибольшими коэффициентами использования металла и весовой точности, изготовление отливок практически неограниченных габаритов и массы, получение заготовок из сплавов, неподдающихся пластической деформации и трудно обрабатываемых резанием (магниты).

Требования к материалам, используемым для получения отливок:

Состав материалов должен обеспечивать получение в отливке заданных физико-механических и физико-химических свойств; свойства и структура должны быть стабильными в течение всего срока эксплуатации отливки.

Материалы должны обладать хорошими литейными свойствами (высокой жидкотекучестью, небольшой усадкой, низкой склонностью к образованию трещин и поглощению газов, герметичностью), хорошо свариваться, легко обрабатываться режущим инструментом. Они не должны быть токсичными и вредными для производства. Необходимо, чтобы они обеспечивали технологичность в условиях производства и были экономичными.

Жидкотекучесть способность расплавленного металла течь по каналам литейной формы, заполнять ее полости и четко воспроизводить контуры отливки.

При высокой жидкотекучести сплавы заполняют все элементы литейной формы.

Жидкотекучесть зависит от многих факторов: от температурного интервала кристаллизации, вязкости и поверхностного натяжения расплава, температуры заливки и формы, свойств формы и т.д.

Чистые металлы и сплавы, затвердевающие при постоянной температуре, обладают лучшей жидкотекучестью, чем сплавы, затвердевающие в интервале температур (твердые растворы). Чем выше вязкость, тем меньше жидкотекучесть. С увеличением поверхностного натяжения жидкотекучесть понижается. С повышением температуры заливки расплавленного металла и формы жидкотекучесть улучшается. Увеличение теплопроводности материала формы снижает жидкотекучесть. Так, песчаная форма отводит теплоту медленнее, и расплавленный металл заполняет ее лучше, чем металлическую форму. Наличие неметаллических включений снижает жидкотекучесть. Так же влияет химический состав сплава (с увеличением содержания серы, кислорода, хрома жидкотекучесть снижается; с увеличением содержания фосфора, кремния, алюминия, углерода жидкотекучесть увеличивается).

Усадка свойство металлов и сплавов уменьшать объем при охлаждении в расплавленном состоянии, в процессе затвердевания и в затвердевшем состоянии при охлаждении до температуры окружающей среды. Изменение объема зависит от химического состава сплава, температуры заливки, конфигурации отливки.

Различают объемную и линейную усадку.

В результате объемной усадки появляются усадочные раковины и усадочная пористость в массивных частях отливки.

Для предупреждения образования усадочных раковин устанавливают прибыли – дополнительные резервуары с расплавленным металлом, а также наружные или внутренние холодильники.

Линейная усадка определяет размерную точность полученных отливок, поэтому она учитывается при разработке технологии литья и изготовления модельной оснастки.

Линейная усадка составляет: для серого чугуна – 0,8…1,3 %; для углеродистых сталей – 2…2,4 %; для алюминиевых сплавов – 0,9…1,45 %; для медных сплавов – 1,4…2,3 %.

Газопоглощение способность литейных сплавов в расплавленном состоянии растворять водород, азот, кислород и другие газы. Степень растворимости газов зависит от состояния сплава: с повышением температуры твердого сплава увеличивается незначительно; возрастает при плавлении; резко повышается при перегреве расплава. При затвердевании и последующем охлаждении растворимость газов уменьшается, в результате их выделения в отливке могут образоваться газовые раковины и поры.

Растворимость газов зависит от химического состава сплава, температуры заливки, вязкости сплава и свойств литейной формы.

Ликвация неоднородность химического состава сплава в различных частях отливки. Ликвация образуется в процессе затвердевания отливки, из-за различной растворимости отдельных компонентов сплава в его твердой и жидкой фазах. В сталях и чугунах заметно ликвируют сера, фосфор и углерод.

Различают ликвацию з ональную, когда различные части отливки имеют различный химический состав, и дендритную, Когдахимическая неоднородность наблюдается в каждом зерне.

Основные положения к выбору способа литья

При выборе способа литья для получения заготовки в первую очередь должен быть рассмотрен вопрос экономии металла. Металлоемкость можно снизить конструктивными и технологическими мероприятиями. Часто закладывается неоправданно большой запас прочности деталей, работающих при незначительных нагрузках. За счет изменения конструкции, образования выемок, изменения толщины стенок, применения коробчатых или тавровых сечений можно достичь значительной экономии металла. При анализе требований, предъявляемых в процессе эксплуатации, возможна замена дорогостоящих материалов.

При выборе способа получения отливки необходимо оценить все положительные и отрицательные стороны возможных технологических процессов, провести сравнительный анализ.

При сравнении различных способов литья необходимо учитывать различные факторы.

Технологические свойства сплава. При пониженной жидкотекучести нежелательно применять литье в металлические формы. При высокой склонности к усадке нежелательно применять литье в металлические формы, так как возможно образование трещин из-за низкой податливости формы, а также литье под давлением из-за сложности пресс-формы.

Возможности способов для получения отливок без дефектов литейного происхождения и для обеспечения равномерной мелкозернистой структуры, высоких механических свойств.

Технологичность конструкции детали применительно к каждому рассматриваемому способу. Сложные по конфигурации отливки получают литьем под давлением, по выплавляемым моделям, в песчаных формах. Литьем в кокиль получают отливки с простой наружной конфигурацией, а центробежным литьем – отливки типа тел вращения. Наиболее тонкостенные отливки получают литьем по выплавляемым моделям и литьем под давлением. Специальные способы литья применяют для получения мелких и средних отливок, при литье в песчаные формы габариты и масса отливок не ограничены.

Следует выбирать способ, обеспечивающий заданную точность размеров и шероховатость поверхности. Высокое качество поверхности дает возможность сохранить при механической обработке литейную корку, имеющую повышенную твердость и износостойкость, снизить себестоимость готовых деталей за счет экономии металла.

Специальные способы литья целесообразно применять в крупносерийном и массовом производствах

Необходимо учитывать возможности имеющегося оборудования, уровень литейной технологии и технологии механической обработки.

Наиболее точным показателем, определяющим эффективность применения того или иного способа, является себестоимость.

Основы конструирования литых заготовок

Минимальную толщину необрабатываемых стенок отливки определяют по диаграмме (рис. 26) в зависимости от габаритного размера. .

Рис. 26. Диаграммы для определения минимальной толщины стенок отливокиз различных сплавов:

1 – стали; 2 – серого чугуна; 3 – бронзы; 4 – алюминиевых сплавов

Толщина внутренних стенок и ребер принимается на 20 % меньше толщины наружных стенок.

Получение отливок без усадочных дефектов достигается при равномерной толщине стенок, т.е. если отсутствуют термические узлы – большое скопление металла в отдельных местах. Равномерность толщины стенки и скопление металла определяют диаметром вписанных окружностей (рис. 26. а, б).

Рис. 27. Устранение местного скопления металла в стенках отливки

Желательно, чтобы соотношение диаметров вписанных окружностей в близко расположенных сечениях не превышало 1,5 . Это достигается уменьшением радиуса галтели с помощью углублений в стенках отливки (рис. 27.в), смещением одной стенки (рис. 27.г), при возможности предусматривается отверстие (рис. 27.д).

Отливки, затвердевающие одновременно должны иметь равномерную толщину стенок с плавными переходами (рис. 28.а). Принцип применяется для мелких и средних тонкостенных отливок из чугуна и других сплавов.

При направленном затвердевании (рис. 28.б) верхние сечения отливок питаются от прибылей 1 . Верхние сечения служат прибылью для нижних сечений. Принцип направленного затвердевания применяется для деталей с повышенными требованиями к герметичности отливок.

Рис. 28 . Конструкции литых деталей, обеспечивающих одновременное (а) и направленное (б) затвердевание отливок

Для снижения литейных напряжений необходимо обеспечить свободную усадку элементов отливки.

Корпусная деталь, показанная на рис. 29. а имеет перегородки, которые затрудняют процесс усадки, в результате чего возникают значительные литейные напряжения. Конструкция, представленная на рис. 29.б, обеспечивает свободную усадку. Придание перегородкам конической формы (рис. 29.в) также снижает усадочные напряжения.

Стремятся к уменьшению габаритных размеров и особенно высоты литой детали. Это облегчает изготовление модельного комплекта, а также процессы формовки, сборки форм и очистки отливок. При этом отливка должна иметь один плоский разъем и располагаться по возможности в одной полуформе.

Контуры литых деталей должны обеспечивать формовку без дополнительных стержней (отсутствие поднутрений). На рис. 31.а показана конструкция отливки, при формовке которой требуется три стержня. При изменении конструкции детали (рис. 31.б) требуется только один стержень, процесс формовки упростился.

Рис. 31. Конструкция литой детали: а – нетехнологичная,; б - технологичная

Необрабатываемые поверхности, перпендикулярные к плоскости разъема, должны иметь конструктивные уклоны.

Бобышки, приливы и другие выступающие части необходимо конструировать так, чтобы не затруднять извлечение модели из формы (рис. 32. При изготовлении нетехнологичных отливок требуется применение в моделях отъемных частей или стержней, что усложняет процесс формовки.

Рис. 32. Конструкции литой детали: а, б – нетехнологичные,; в, г – технологичные

Внутренние полости сложных отливок необходимо изготавливать с минимальным числом стержней. На рис. 33 представлены варианты конструкции литой детали: технологичной (б) и нетехнологичной (а).

Рис. 33. Конструкция литой детали: а – нетехнологичная,; б - технологичная

В конструкции должно быть достаточное число окон для прочного крепления стержней в форме, удаления газов из стержня и удобства выбивки стержней из отливки.

В конструкции детали следует избегать пазов и узких полостей, при выполнении которых возможно образование песчаных раковин, из-за разрушения стержней потоком расплавленного металла.

Рис. 34. Устранение пазов в конструкции литой детали

Минимальные диаметры отверстий в отливках выбираются в зависимости от материала и толщины стенки.

← Вернуться

×
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:
Я уже подписан на сообщество «i-topmodel.ru»