Частотно-регулируемый асинхронный электропривод - курс лекций. А.в

Подписаться
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:

Транскрипт

1 А.В. Романов ЭЛЕКТРИЧЕСКИЙ ПРИВОД Курс лекций Воронеж 006 0

2 Воронежский государственный технический университет А.В. Романов ЭЛЕКТРИЧЕСКИЙ ПРИВОД Утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 006 1

3 УДК 6-83(075.8) Романов А.В. Электрический привод: Курст лекций. Воронеж: Воронеж. гос. техн. ун-т, с. В курсе лекций рассматриваются вопросы построения электрических приводов постоянного и переменного тока, анализа электромеханических и механических характеристик электрических машин, принципы управления в электроприводе. Издание соответствует требованиям Государственного образовательного стандарта высшего профессионального образования по направлению "Электротехника, электромеханика и электротехнологии". Курс лекций предназначен для студентов второго курса специальности "Электропривод и автоматика промышленных установок и технологических комплексов" очной формы обучения на базе среднего профессионального образования. Издание предназначено для студентов технических специальностей, аспирантов и специалистов, занимающихся вопросами разработки электроприводов. Табл. 3. Ил. 7. Библиогр.: 6 назв. Научный редактор канд. техн. наук, проф. Ю.М. Фролов Рецензенты: кафедра автоматизации технологических процессов Воронежского государственного архитектурно-строительного университета (зав. кафедрой д-р техн. наук, проф. В.Д. Волков); д-р техн. наук, проф. А.И. Шиянов Романов А.В., 006 Оформление. ГОУВПО «Воронежский государственный технический университет», 006

4 ВВЕДЕНИЕ Электрический привод (ЭП) играет большую роль в реализации задач повышения производительности труда в разных отраслях народного хозяйства, автоматизации и комплексной механизации производственных процессов. Около 70 % вырабатываемой электроэнергии преобразуется в механическую энергию электродвигателями (ЭД), которые приводят в движение различные станки и механизмы. Современный ЭП отличается широким разнообразием применяемых средств управления от обычной коммутационной аппаратуры до ЭВМ, большим диапазоном мощностей двигателей, диапазоном регулирования скоростей до 10000:1 и более, применением как тихоходных, так и сверхскоростных ЭД. Электрический привод является единой электромеханической системой, электрическая часть которой состоит из электродвигательного, преобразовательного, управляющего и информационного устройств, а механическая часть включает в себя все связанные движущиеся массы привода и механизма. Широкое внедрение электрического привода во все отрасли промышленности и все возрастающие требования к статическим и динамическим характеристикам электроприводов предъявляют повышенные требования к профессиональной подготовке специалистов в области электрического привода. Необходимо заметить, что, поскольку студентам очной формы обучения на базе среднего специального образования учебным планом отведено минимальное количество учебных часов для освоения специальности, то прогресс в профессиональных знаниях сильно зависит от самостоятельной работы студентов. В частности, в конце данного издания приведен библиографический список научно-технической литературы, рекомендуемой к изучению помимо предлагаемого конспекта лекций. Кроме этого, в дополнение к курсу лекций выпущен лабораторный практикум по электроприводу , в котором рассматриваются вопросы экспериментального исследования 3

5 электропривода постоянного и переменного тока. Для более успешного усвоения дисциплины студентам рекомендуется заранее изучать текст лекций и содержательную часть лабораторных работ. Государственный образовательный стандарт высшего профессионального образования Российской Федерации регламентирует следующую обязательную тематику для учебного курса по дисциплине "Электрический привод". В Ы П И С К А из Государственного образовательного стандарта высшего профессионального образования государственных требований к минимуму содержания и уровню подготовки дипломированного инженера по направлению "Электротехника, электромеханика и электротехнологии", по специальности "Электропривод и автоматика промышленных установок и технологических комплексов" ОПД.Ф.09. "Электрический привод" Электропривод как система; структурная схема электропривода; механическая часть силового канала электропривода; физические процессы в электроприводах с машинами постоянного тока, асинхронными и синхронными машинами; электрическая часть силового канала электропривода; принципы управления в электроприводе; элементная база информационного канала; синтез структур и параметров информационного канала; элементы проектирования электропривода. Материал данного курса лекций полностью соответствует указанной тематике. 4

6 ЛЕКЦИЯ 1 ИСТОРИЯ РАЗВИТИЯ ЭЛЕКТРОПРИВОДА КАК ОТРАСЛИ НАУКИ И ТЕХНИКИ Вопросы, рассматриваемые в лекции. 1. Краткая историческая справка о развитии электроприводов постоянного и переменного тока.. Работы отечественных и зарубежных ученых. 3. Роль электропривода в народном хозяйстве. 4. Структура и основные элементы современного автоматизированного электропривода. Электрический привод сравнительно молодая отрасль науки и техники, насчитывающая немногим более столетия с момента практического применения. Появление ЭП обусловлено трудами многих отечественных и зарубежных ученыхэлектротехников. В этом блистательном ряду имена таких крупных ученых как датчанин Х. Эрестед, показавший возможность взаимодействия магнитного поля и проводника с током (180 г.), француз А. Ампер, математически оформивший это взаимодействие в том же 180 г., англичанин М. Фарадей, построивший в 181 году экспериментальную установку, доказавшую возможность построения электродвигателя. Это отечественные ученые-академики Б.С. Якоби и Э.Х. Ленц, которым впервые удалось создать в 1834 году электродвигатель постоянного тока. Работа Б.С. Якоби по созданию двигателя получила широкую мировую известность, и многие последующие работы в этой области были вариацией или развитием его идей, например, в 1837 году американец Девенпорт построил свой электродвигатель с более простым коммутатором. В 1838 г. Б.С. Якоби усовершенствовал конструкцию ЭД, привнеся в него практически все элементы современной электрической машины. Этот электродвигатель, мощностью в 1 л.с., был использован для привода лодки, которая с 1 пассажирами совершила движение со скоростью до 5 км/ч против течения Не- 5

7 вы. Поэтому 1838 год считается годом рождения электропривода. Уже на этой первой, еще несовершенной модели электропривода обнаружились весьма значительные преимущества его по сравнению с господствовавшим в то время паровыми механизмами это отсутствие парового котла, запасов топлива и воды, т.е. существенно лучшие массогабаритные показатели. Однако несовершенство первого ЭД, а главное неэкономичность источника электроэнергии гальванической батареи, которая была разработана итальянцем Л. Гальвани (), явились причиной того что, работы Б.С. Якоби и его последователей сразу не получили практического применения. Требовался простой, надежный и экономичный источник электрической энергии. И выход был найден. Еще в 1833 году академик Э.Х. Ленц открыл принцип обратимости электрических машин, объединивший впоследствии пути развития двигателей и генераторов. И вот в 1870 г. сотрудник французской фирмы «Альянс» З. Грамм создал промышленный тип электрического генератора постоянного тока, давший новый импульс в развитие электропривода и внедрению его в промышленность. Вот некоторые примеры. Наш соотечественник электротехник В.Н. Чиколев () создает в 1879 году ЭП для дуговых ламп, электроприводы швейной машины (188) и вентилятора (1886), отмеченные золотыми медалями на всероссийских выставках. Происходит внедрение ЭП постоянного тока в военно-морском флоте: подъемник боезапасов на броненосце "Сисой Великий" (), первый рулевой привод на броненосце "1 Апостолов" (199). В 1895 году А.В. Шубин разработал систему «инжектор-двигатель» для рулевого управления, установленный в дальнейшем на броненосцах "Князь Суворов", "Слава" и др. Электропривод проникает в ткацкое производство на подмосковные текстильные фабрики Морозова, Лингардта, Прохоровскую мануфактуру, где уже к 1896 году работало значительное число двигателей постоянного тока. 6

8 Отмечаются случаи использования электропривода в городском транспорте трамвайные линии в городах Киеве, Казани и Нижнем Новгороде (189) и несколько позже в Москве (1903) и Петербурге (1907). Однако отмеченные успехи были незначительными. В 1890 году электропривод составлял всего лишь 5% от общей мощности используемых механизмов. Появившийся практический опыт требовал анализа, системотизации и разработки теоретической базы для последующего освещения путей развития ЭП. Огромную роль здесь сыграл научный труд нашего соотечественника крупнейшего электротехника Д.А. Лачинова (), опубликованный в 1880 году в журнале "Электричество" под названием "Электромеханическая работа", заложившей первые основы науки об электроприводе. Д.А. Лачинов убедительно доказал преимущества электрического распределения механической энергии, впервые дал выражение для механической характеристики двигателя постоянного тока с последовательным возбуждением, дал классификацию электрических машин по способу возбуждения, рассмотрел условия питания двигателя от генератора. Поэтому 1880 год год опубликования научного труда "Электромеханическая работа" считается годом рождения науки об электроприводе. Наряду с электроприводом постоянного тока пробивай себе дорогу в жизнь и электропривод переменного тока. В 1841 году англичанин Ч. Уитсон построил однофазный синхронный электродвигатель. Но он не нашел практического применения из-за трудностей при пуске. В 1876 году П.Н. Яблочков () разработал несколько конструкций синхронных генераторов для питания изобретенных им свечей, а также изобрел трансформатор. Следующим шагом на пути к ЭП переменного тока явилось открытие в 1888 году итальянцем Г. Феррарисом и югославом Н. Теслой явление вращающегося магнитного поля, что положило начало конструированию многофазных электродвигателей. Феррарисом и Теслой 7

9 были разработаны несколько моделей двухфазных двигателей переменного тока. Однако двухфазный ток в Европе не получил широкого распространения. Причиной этого была разработка русским электротехником М.О. Доливо-Добровольским () в 1889 году более совершенной трехфазной системы переменного тока. В этом же 1889 году 8 марта он запатентовал асинхронный электродвигатель с короткозамкнутым ротором (АД КЗ), а несколько позднее и с фазным ротором. Уже в 1891 году на электротехнической выставке во Франкфурте-на-Майне М.О. Доливо-Добровольский продемонстрировал асинхронные электдвигатели мощностью 0,1 квт (вентилятор); 1,5 квт (генератор постоянного тока) и 75 квт (насос). Доливо-Добровольским также были разработаны 3-х фазный синхронный генератор и 3-х фазный трансформатор, конструкции которых остается практически неизменными и в наше время. Марсель Депре в 1881 году обосновал возможность передачи электроэнергии на расстоянии, и в 188 была построена первая линия электропередачи протяженностью 57 км и мощность 3 квт. В результате вышеперечисленных работ были устранены последние принципиальные технические препятствия к распространению электрической передачи энергии и был создан наиболее надежный, простой и дешевый электрический двигатель, пользующийся в настоящее время исключительным распространением. Более 50 % всей электроэнергии преобразуется в механическую посредством самого массового электропривода на основе АД КЗ. Первые в России 3-х фазные ЭП переменного тока были установлены в 1893 году в Шепетовке и на Коломенском заводе, где к 1895 году было установлено 09 электродвигателей общей мощностью 1507 квт. И все же темпы внедрения электропривода в промышленность оставались низкими из-за отсталости России в области электротехнического производства 8

10 (,5 % от мировой продукции) и выработки электроэнергии (15 место в мире) даже в пору расцвета царской России (1913). После победы Великой Октябрьской революции в 190 г. был поставлен вопрос о коренной реорганизации всего народного хозяйства. Был разработан план ГОЭЛРО (государственный план электрификации России), предусматривающий в течение лет создание 30 тепловых и гидроэлектростанций общей мощностью 1 млн. 750 тыс. квт (к 1935 году было введено около 4,5 млн. квт). Работая над планом ГОЭЛРО, В.И. Ленин отметил, что "электрический привод как раз наиболее надежно обеспечивает и любую быстроходность и автоматическую связанность операций на самом обширном поле труда". Почему уделялось такое большое внимание электроприводу и электрификации? Дело очевидно в том, что ЭП является силовой основой выполнения механической работы и автоматизации производственных процессов с высоким КПД, при этом электропривод создает все условия для высокопроизводительного труда. Вот простой пример. Известно, что в течении рабочего дня один человек может при помощи мускульной энергии выработать около 1 квт/ч, стоимость производства которой составляет (условно) 1 коп. В высоко электрифицированных отраслях промышленности установленная мощность электродвигателей на одного рабочего составляет 4-5 квт (этот показатель называется электровооруженность труда). При восьмичасовом рабочем дне получаем потребление 3-40 квт/ч. Это значит, что рабочий управляет механизмами, работа которых за смену эквивалентна работе 3-40 человек. Еще большая эффективность ЭП наблюдается в горнодобывающей промышленности. Например, на шагающем экскаваторе типа ЭШ-15/15, имеющим стрелу 15 метров и ковш емкостью 15 кубических метров, мощностью одного асинхронного двигателя составляет 8, МВт. На прокатных станах 9

11 установленная мощность ЭД составляет более 60 МВт, а скорость прокатки 16 км/ч. Именно поэтому было так важно обеспечить широкое внедрение электропривода в народное хозяйство. Количественно это характеризуется коэффициентом электрификации, равным отношению мощности электродвигателей к мощности всех установленных двигателей, в том числе и неэлектрических. Динамику роста коэффициента электрификации в России можно проследить по табл Таблица 1.1 значение коэффициента электрификации, % год около В результате выполнения плана ГОЭЛРО СССР в 198 году по коэффициенту электрификации обогнал Англию, в 1936 г. перегнал Германию и догнал США, тем самым ликвидировав отсталость России от ведущих мировых держав. В настоящее время ЭП занял господствующее положение в народном хозяйстве и потребляет порядка /3 всей производимой электрической энергии в стране (около 1,5 трл. квт/ч). Так что же такое электропривод? Согласно ГОСТ Р электрическим приводом называется электромеханическая система, состоящая в общем случае из взаимодействующих преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов (ИО) рабочей машины 10

12 Электрическая сеть Преобразовательное устройство Электродвигательное устройство Управляющее информационное устройство Передаточное устройство Рабочая машина Исполнительный орган электрическая связь механическая связь Рис Структурная схема автоматизированного электропривода (РМ) и управления этим движением в целях осуществления технологического процесса . Данное определение проиллюстрировано на рис Расшифруем составные части . Преобразовательное устройство (преобразователь электроэнергии) электротехническое устройство, преобразующее электрическую энергию с одними значениями параметров и/или показателей качества в электрическую энергию с другими значениями параметров и/или показателей качества. (Отметим, что преобразование параметров может осуществляться по роду тока, напряжению, частоте, числу фаз, фазе напряжения, согласно ГОСТ 18311). Преобразователи классифицируют по току (постоянного и переменного тока), а также по элементной базе тиристорные и транзисторные преобразователи. 11

13 Электродвигательное устройство (электромеханический преобразователь) электротехническое устройство, предназначенное для преобразования электрической энергии в механическую или механической в электрическую. Применяемые в электроприводе электродвигатели могут быть переменного и постоянного тока. По мощности электрические машины можно условно разделить на: микромашины до 0,6 квт. машины малой мощности до 100 квт. машины средней мощности до 1000 квт. большой мощности свыше 1000 квт. По скорости вращения: тихоходные до 500 об/мин. средней скорости до 1500 об/мин. быстроходные до 3000 об/мин. сверхбыстроходные до об/мин. По номинальному напряжению бывают низковольтные двигатели (до 1000 В) и высоковольтные (выше 1000 В). Управляющее информационное устройство. Управляющее устройство предназначено для формирования управляющих воздействий в электроприводе и представляет собой совокупность функционально связанных между собой электромагнитных, электромеханических, полупроводниковых элементов. В простейшем случае управляющее устройство может сводится к обычному рубильнику, включающему ЭД в сеть. Высокоточные ЭП содержат в управляющем устройстве микропроцессоры и ЭВМ. Информационное устройство предназначено для получения, преобразования, хранения, распределения и выдачи информации о переменных ЭП, технологического процесса и сопредельных систем для использования в системе управления электропривода и внешних информационных системах. Передаточное устройство состоит из механической передачи и устройства сопряжения. Механическая передача это механический преобразователь, предназначенный для переда- 1

14 чи механической энергии от ЭД к исполнительному органу рабочей машины и согласованию вида и скоростей их движения. Устройство сопряжения совокупность электрических и механических элементов, обеспечивающих взаимодействие электропривода с сопредельными системами и отдельных частей электропривода между собой. В качестве передаточного устройства могут выступать редукторы, клиноременные и цепные передачи, электромагнитные муфты скольжения и т.п. Рабочая машина машина, осуществляющая изменение формы, свойств, состояния и положения предмета труда. Исполнительный орган рабочей машины движущийся элемент рабочей машины, выполняющий технологическую операцию. Данные определения необходимо дополнить. Система управления электропривода совокупность управляющих и информационных устройств и устройств сопряжения ЭП, предназначенных для управления электромеханическим преобразованием энергии с целью обеспечения заданного движения исполнительного органа рабочей машины. Система управления электроприводом внешняя по отношению к электроприводу система управления более высокого уровня, поставляющая необходимую для функционирования электропривода информацию. 13

15 ЛЕКЦИЯ ЭЛЕКТРИЧЕСКИЙ ПРИВОД ОСНОВНОЙ ЭЛЕМЕНТ СИСТЕМ КОМПЛЕКСНОЙ МЕХАНИЗАЦИИ И АВТОМАТИЗАЦИИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ В МАШИННОМ ПРОИЗВОДСТВЕ Вопросы, рассматриваемые в лекции. 1. Структурная эволюция электроприводов.. Различные типы электроприводов, используемые в промышленности и сельском хозяйстве. 3. Основные тенденции развития электроприводов. 4. Структура ЭП с позиций "Теории электропривода". За годы своего существования электропривод претерпел коренные изменения. В первую очередь, совершенствовались способы передачи механической энергии от двигателей к рабочим машинам. Например, в нашей стране до начала первой пятилетки (198) господствовал групповой электропривод "электропривод с одним электродвигателем, обеспечивающий движение исполнительных органов нескольких рабочих машин или нескольких ИО одной рабочей машины" , но уже к концу первой пятилетки (193) он был изъят из промышленности. На рис..1 показана функциональная схема группового электропривода предприятия. Особенность данной схемы в механическом распределении энергии по всему предприятию и, соответственно, в механическом управлении процессом, т.е. управлении работой исполнительных органов рабочих машин. На рис.. показана другая схема группового ЭП группового электропривода рабочих машин. В отличии от предыдущей схемы электрическая энергия здесь подводится непосредственно к РМ, а уже в них происходит ее механическое распределение. Сохраняется механическое управление работой. К числу общих недостатков группового электропривода можно отнести: ступенчатое регулирование скорости; 14

16 Электрическая сеть U, I электрическая энергия ЭД трансмиссионный вал M, ω механическая энергия РМ 1 РМ ИО 1 ИО ИО 3 ИО 1 ИО ИО 3 Рис..1. Групповой электропривод предприятия Электрическая сеть ЭД 1 ЭД РМ 1 РМ ИО 1 ИО ИО 3 ИО 1 ИО ИО 3 Рис... Групповой электропривод рабочих машин малый диапазон регулирования; опасные условия труда; малая производительность. Групповой электропривод был заменен более перспективным и экономичным индивидуальным электроприводом это "ЭП, обеспечивающий движение одного исполнительного органа рабочей машины" , функциональная схема показана 15

17 на рис..3. В таком варианте электропривода распределение электрической энергии происходит вплоть до рабочих органов. Также появляется возможность управления механической энергией электрическим способом. Кроме этого, индивидуальный привод позволяет в ряде случаев упростить конструкции РМ, т.к. ЭД нередко конструктивно является рабочим органом (вентилятор, электродрель и т.п.). Электрическая сеть РМ ЭД 1 ЭД ЭД 3 ИО 1 ИО ИО 3 Рис..3. Индивидуальный электропривод В настоящее время индивидуальный ЭП это основной тип промышленно используемого электропривода. Но не единственный. В ряде производственных механизмов находит применение взаимосвязанный электропривод это "два или несколько электрически или механически связанных между собой электроприводов, при работе которых поддерживается заданное соотношение их скоростей и (или) нагрузок и (или) положения исполнительных органов рабочих машин". Этот тип электропривода объединяет два вида электроприводов многодвигательный ЭП и электрический вал. Многодвигательный электропривод (рис..4) "электропривод, содержащий несколько электродвигателей, механическая связь между которыми осуществляется через исполнительный орган рабочей машины" . Подобный электропривод в ряде случаев позволяет снизить усилия в рабочем органе, распределить их в механизме более равномерно и без перекосов, повысить надежность и производительность установки. 16

18 Электрическая сеть ЭД 1 РМ ЭД Рис..4. Многодвигательный электропривод Многодвигательный электропривод применяется в шахтных подъемниках, в частности впервые был использован в Шепетовке в конце XIX века. Электрический вал "взаимосвязанный электропривод, обеспечивающий синхронное движение двух или более исполнительных органов рабочей машины, не имеющих механической связи" . В качестве примера можно привести приводы шлюзов и длинные конвейерные линии. На рис..5 приведена схема конвейера на асинхронных ЭД с фазным ротором, поясняющая принцип работы электрического вала. Частоты вращения ω 1 и ω, благодаря электрическому соединению роторов электродвигателей, будут одинаковыми или синхронными. ω 1 лента конвейера ω ЭД 1 ЭД электрический вал Рис..5. Иллюстрация работы электрического вала Современный электропривод отличается широким разнообразием применяемых средств управления от обычной коммутационной аппаратуры до управляющих ЭВМ, большем 17

19 диапазоном мощностей ЭД от долей ватта до квт, диапазоном регулирования скоростей до 10000:1 и более, применением как тихоходных двигателей (сотни об/мин), так и сверхскоростных (до об/мин). ЭП является основой автоматизации технологических объектов в промышленности, сельском хозяйстве, космосе; реализуя важнейшую задачу современности повышение производительности труда. В настоящее время для электропривода характерна тенденция использования энергосберегающих технологий. К традиционным системам, позволяющим возвращать энергию в сеть (этот процесс называется рекуперацией), таким как система генератор-двигатель (система Г-Д), электрический каскад (регулируемый ЭП с АД с фазным ротором, в котором энергия скольжения возвращается в электрическую сеть), электромеханический каскад (регулируемый ЭП с АД с фазным ротором, в котором энергия скольжения преобразуется в механическую и передается на вал ЭД), происходит массовая замена нерегулируемого электропривода на регулируемый. Как следствие этого, конструкция ЭП становится безредукторной, что повышает общий КПД привода. Прогресс в области конструирования преобразовательной техники, в частности, для преобразователей частоты стимулирует замену двигателей постоянного тока и синхронных ЭД на более дешевые и надежные асинхронные ЭД с короткозамкнутым ротором. Если рассматривать электродвигательные установки с позиций теории электропривода, то как объект изучения это электромеханическая система, являющаяся совокупностью механических и электромеханических устройств, объединенных общими силовыми электрическими цепями и (или) цепями управления, предназначенная для осуществления механического движения объекта. В электроприводе в единое целое объединяется три части (рис.6): механическая часть, электрический двигатель и система управления. 18

20 Эл. сеть Эл. двигатель М, ω Мех. часть Полезная механическая работа ЭСУ ЭМП РД ПУ ИМ ДОС М мех к ДОС ИСУ от ДОС Система управления от ЗУ Рис..6. Функциональная схема ЭП с позиций теории электропривода Механическая часть включает все движущиеся элементы механизма ротор двигателя РД, передаточное устройство ПУ, исполнительный механизм ИМ, на который передается полезный механический момент М мех. В электродвигательное устройство входят: электромеханический преобразователь энергии ЭМП, преобразующий электрическую мощность в механическую, и ротор двигателя РД, на который воздействует электромагнитный момент М двигателя при частоте вращения (угловой скорости) ω. Система управления (СУ) включает в себя энергетическую часть ЭСУ и информационную часть ИСУ. На ИСУ поступают сигналы от задающих устройств ЗУ и датчиков обратной связи DOC. 19

21 ЛЕКЦИЯ 3 МЕХАНИЧЕСКАЯ ЧАСТЬ ЭЛЕКТРОПРИВОДА Вопросы, рассматриваемые в лекции. 1. Назначение и основные механические узлы ЭП.. Активный и реактивный статические моменты. 3. Типовые нагрузки механической части электропривода. Основной функцией электропривода является приведение в движение рабочей машины в соответствии с требованиями технологического режима. Движение это совершается механической частью электропривода (МЧ ЭП), в состав которой входит ротор электродвигателя, передаточное устройство и рабочая машина (рис. 3.1). Приведенные на рис. 3.1 параметры обозначают М в, М рм, М ио моменты на валу двигателя, рабочей машины, исполнительного органа; ω в, ω рм, ω ио угловые скорости вала ЭД, рабочей машины, исполнительного органа; F ио, V ио усилие и линейная скорость исполнительного органа. Ротор М в ω в Передаточное устройство М рм ω рм Рабочая машина М ио ω ио F ио V ио Рис.3.1. Схема механической части электропривода В зависимости от вида передачи и конструкций рабочей машины различают (рис. 3.1): ЭП вращательного движения, обеспечивающий, соответственно, вращательное движение исполнительного органа РМ; выходные параметры момент ИО механизма М ио и угловая частота вращения ω ио; ЭП поступательного движения, обеспечивающий поступательное линейное движение ИО рабочей машины; выходные параметры усилие F ио и линейная скорость V ио. 0

22 Отметим, что существует также специальный ЭП, называемый колебательным электроприводом, обеспечивающим возвратно-поступательное (вибрационное) движение (как угловое, так и линейное) исполнительного органа РМ. В механической части ЭП действуют различные виды усилий, моментов, различающиеся характером действия. Конкретно различают статические моменты реактивные М ср и активные М са. Реактивные моменты создаются силой трения, силами сжатия, растяжения, кручения неупругих тел. Классическим примером здесь может служить сухое трение (рис. 3.). Силы трения всегда противодействуют движению и при реверсе электропривода момент трения, обусловленный этими силами, также меняет направление, а функция М с (ω) при скорости ω = 0 претерпевает разрыв. Силы трения проявляются в передачах электродвигателя и рабочих машинах. F m V F тр ω F тр V m F М ср М ср М с Рис. 3.. Зависимость статического момента сил сухого трения от скорости Активные (потенциальные) моменты создаются силой тяжести, силами сжатия, растяжения, кручения упругих тел. В МЧ ЭП активные моменты возникают в нагруженных элементах (валы, зубчатые зацепления и т.п.) при их деформации, поскольку механические связи не являются абсолютно жесткими. Особенности действия потенциальных моментов наглядно проявляются на примере силы тяжести. При подъеме или 1

23 спуске груза направление силы тяжести F j остается постоянным. Иными словами, при реверсе электропривода направление активного момента М са сохраняется неизменным (рис. 3.3). ω М с V V М са Рис Зависимость активного статического момента от скорости, характерная для механизмов подъема грузов Краткий анализ видов М с показывает, что между реактивными и активными моментами имеется существенное отличие: реактивный момент с изменением направления движения также меняет свое направление, активный же момент сохраняет его постоянным. Рабочие машины, несмотря на большое многообразие конструкций и выполняемых операций, могут быть классифицированы по виду зависимости статического момента от ряда факторов. Различают укрупненно 5 групп механизмов. К первой группе относятся механизмы, у которых статический момент не зависит от скорости вращения, то есть М с (ω) = const. Это значит, что механическая характеристика рабочей машины зависимость статического момента от частоты вращения представляет прямую, параллельную оси угловой скорости ω, и претерпевает разрыв при ω = 0 для реактивных статических моментов (как показано на рис. 3.), например, для ленточного транспортера с равномерной погонной нагрузкой. F j m

24 Для активных М с (как показано на рис. 3.3) механическая характеристика не зависит от направления движения. Типичным примером является механизм подъемника. Вторая группа механизмов достаточно представительна [, 3]. Здесь М с зависит от скорости вращения РМ: () = М + (М + М) Мс с0 сн с0 а ω ωн ω, (3.1) где М со момент механических потерь на трение; М сн статический момент рабочей машины при номинальной скорости вращения ω н; ω текущая скорость вращения; а коэффициент пропорциональности. При а = 0 имеем М с (ω) = М сн, то есть получаем механическую характеристику машин первой группы. При а = 1 имеем линейную зависимость статического момента от скорости, что присуще, например, генераторам G постоянного тока, работающим на постоянное сопротивление R (рис. 3.4). ~ U 1, f 1 G R ω М с (ω) U ов ОВ М с0 М с Рис Механическая характеристика при а = 1 При а = (рис. 3.5) получаем наиболее многочисленную группу рабочих механизмов [, 3], имеющих вентиляторную характеристику (вентиляторы, гребные винты, центробежные насосы и другие подобные механизмы). 3

25 ~ U 1, f 1 ω М с (ω) М с0 Рис Вентиляторная механическая характеристика При а = -1 имеет место гиперболическая зависимость, характерная для большинства металлорежущих станков, когда с увеличением скорости подачи резца V (соответственно при этом увеличивается усилие резания) снижает скорость обработки детали ω (рис. 3.6). М с ~ U 1, f 1 ω V ω М с (ω) Рис Гиперболическая механическая характеристика Отметим, что на практике встречаются и другие значения коэффициента а. Третья группа механизмов это группа машин, у которых статический момент является функцией угла поворота вала РМ α, то есть М с = f(α). Это свойственно, например, шатунно-кривошипным (рис 3.7) и эксцентриковым механизмам, в которых происходит преобразование вращательного движения с частотой вращения ω в возвратно-поступательное движение со скоростью V. Рабочий ход механизма, при котором достига- 4 М с0 М с

26 ется максимальный статический момент M cmax, имеет место, например, при 0 α π, обратный ход с максимальным моментом при π α π. M cmax, хх ω М с M cmax М с (α) M cmax, õõ V М с Рис Зависимость М с от угла поворота кривошипа α Четвертая группа механизмов это группа рабочих машин, у которых М с зависит одновременно и от угла поворота, и от скорости движения, т.е. М с = f(α, ω) Подобная зависимость наблюдается при движении электротранспорта на закругленном участке пути. Пятая группа механизмов группа РМ, у которых статический момент изменяется случайным образом во времени. К ней можно отнести геологические буровые станки, дробилки крупного дробления и другие подобные механизмы (рис. 3.8). α М с ω М с (t) 0 t Рис Зависимость М с = f(t) при бурении горных пород 5

27 ЛЕКЦИЯ 4 ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА Вопросы, рассматриваемые в лекции. 1. Конструкция машин постоянного тока.. Основные параметры и электромеханическое преобразование энергии в машинах постоянного тока. 3. Классификация электродвигателей постоянного тока. 4. Ориентировочное определение сопротивления якоря. Электрическая машина постоянного тока (МПТ) имеет специфическую конструкцию. Схематически на примере электродвигателя П-9 она показана на рис Неподвижная часть (статор) содержит главные полюса 1 с катушками, образующие индуктор или систему возбуждения машины. Полюса равномерно распределены на внутренней поверхности станины 3, которая совмещает функции механической детали (корпуса) и активной части (ярма магнитопровода статора). Поскольку через станину (ярмо) проходит постоянный магнитный поток, не индуктирующий в ней вихревых токов, то она выполняется монолитной стальной. Сердечники главных полюсов чаще всего выполняются шихтованными: они состоят из отдельных пластин, стянутых заклепками, шпильками или др. Такое конструктивное решение используется не для ограничения вихревых токов, а скорее диктуется удобством изготовления полюса. Кроме обмоток возбуждения (ОВ) главные полюса МПТ могут содержать компенсационную обмотку, предназначенную для компенсации размагничивающего действия собственного магнитного поля якоря (реакции якоря), а также стабилизирующую обмотку, используемую для тихоходных двигателей большой мощности при необходимости временного увеличения частоты вращения в,5 раза. Для обеспечения безыскровой коммутации в машине предусмотрены добавочные полюса 4, обмотки которых включаются последовательно в цепь ротора. 6

28 Рис Машина постоянного тока типа П-9 Ротор МПТ чаще называют якорем. Он несет главную обмотку машины, по которой течет ее основной ток. Якорная обмотка 5 располагается в пазах магнитопровода 6. Выводы 7

29 обмотки соединены с пластинами коллектора 7. Магнитопровод и коллектор размещены на общем валу 8. Для нормальной работы машины постоянного тока пазы магнитопровода должны быть строго сориентированы относительно пластин 7. К внешней (активной) поверхности коллектора прижимаются токосъемные щетки. (угольными, графитовыми, композитными и др.). Одна группа может содержать одну или несколько щеток, в зависимости от пропускаемого через контакт тока. Важное значение имеет площадь контакта (прилегание желательно обеспечить близким к 100%) и сила нажатия щетки к коллектору. Щетки устанавливаются в щеткодержатели, которые ориентируют и прижимают щетку. Сами же щеткодержатели размещают на специальных пальцах траверсы 9, смонтированной на внутренней стороне подшипникового щита 10. Траверса имеет возможность поворота вокруг оси машины и фиксации ее в любом выбранном положении, что позволяет при необходимости регулировать положение щеток на коллекторе из условия минимального искрения в щеточном контакте. Машины постоянного тока чаще используются в качестве двигателей, они обладают высоким пусковым моментом, возможностью широко регулировать скорость, легко реверсируются, имеют практически линейные регулировочные характеристики, экономичны. Эти достоинства МПТ часто ставят их вне конкуренции в приводах, требующих широких и точных регулировок. Важным преимуществом МПТ является также возможность их регулирования по слаботочным цепям возбуждения. Тем не менее, используют эти машины только там, где невозможно подобрать равноценную замену. Связано это с наличием щеточно-коллекторного узла, который обуславливает большинство недостатков МПТ: повышает стоимость, сокращает ресурс работы, создает радиопомехи, акустический шум. Искрение под щетками ускоряет износ щеток и пластин коллектора. Продукты износа покрывают внутреннюю полость 8

30 машины тонким проводящим слоем, ухудшая изоляцию токопроводящих цепей. Работа электродвигателя и генератора постоянного тока характеризуется следующими основными величинами: М электромагнитный момент, развиваемый электродвигателем, Н м; М c момент сопротивления (нагрузка, статический момент), создаваемый производственным механизмом, Н м, обычно является приведенным к валу электродвигателя (формулы приведения рассматриваются в лекции 14); I я ток якоря электродвигателя, А; U напряжение, приложенное к якорной цепи, В; Е электродвижущая сила (ЭДС) машины постоянного тока (для электродвигателя ее называют противо-эдс, так как в электродвигателе она направлена навстречу напряжению U и препятствует протеканию тока), В; Ф магнитный поток, создаваемый в электродвигателе при протекании тока возбуждения по ОВ, Вб; R я сопротивление цепи якоря, Ом; ω угловая частота (скорость) вращения якоря ЭД, с -1 (вместо ω часто употребляется величина n, об/мин), 60 ω n =. (4.1) π Р мощность двигателя, Вт, различают механическую (полезную) мощность на валу ЭД Р мех и полную (электрическую) мощность Р мех = М ω, (4.) Р эл = U I я; (4.3) η коэффициент полезного действия МПТ, равный отношению полезной мощности к полной; λ коэффициент перегрузочной способности, различают перегрузочную способность по току λ I и по моменту λ М: 9

31 λ I = I max /I н; λ М = M max /M н. Взаимосвязь параметров МПТ отражена в следующих четырех формулах: dω M M = c dt J, (4.4) E = K Ф ω, (4.5) U E Iя =, R я (4.6) М = К Ф I я, (4.7) где J момент инерции системы электропривода, кг м; dω/dt угловое ускорение вала электродвигателя, c -1 ; К конструктивная постоянная электродвигателя, pn N K =, (4.8) π a где pn число пар главных полюсов; N число активных проводников якоря; a число пар параллельных ветвей якоря. Формула (4.4) является видоизмененной записью основного уравнения движения электропривода dω M Mc = J. (4.9) dt Отметим, что основное уравнение движения является аналогом закона Ньютона a = F/m. Разница лишь в том, что для вращательного движения линейное ускорение заменяется угловым ускорением ε = dω/dt, масса m моментом инерции J, а сила F заменяется динамическим моментом М дин, равным разности момента электродвигателя М и статического момента М с. Формула (4.5) отражает принцип действия генератора постоянного тока, основанный на законе электромагнитной индукции. Для того, чтобы появилась ЭДС, достаточно вращать якорь с некоторой скоростью ω в магнитном потоке Ф. 30

32 ЭДС Е в машине получить невозможно, если отсутствует хотя бы одна из величин: ω (электродвигатель не вращается) или Ф (машина не возбуждена). Формула (4.6) показывает, что ток I я в якорной цепи протекает в двигателе под действием приложенного к якорю напряжения U. Величина этого тока ограничивается вырабатываемой при вращении электродвигателя противо-эдс и суммарным сопротивлением якорной цепи. Формула (4.7) фактически иллюстрирует принцип действия ЭД постоянного тока, основанный на законе взаимодействия тока в проводнике и магнитного поля (закон Ампера). Для возникновения вращающего момента необходимо создать магнитный поток Ф и пропустить ток I я по обмотке якоря. Приведенные формулы описывают все основные процессы в электродвигателе постоянного тока. МПТ различают по способу включения обмотки главных полюсов (обмотки возбуждения) в электрическую цепь. 1. Машины постоянного тока с независимым возбуждением. Суть термина в том, что электрическая цепь обмотки возбуждения (ОВ) является независимой от силовой цепи ротора ЭД. Для генераторов это практический единственный вариант схемного решения, т.к. по цепи возбуждения происходит управление работой МПТ. Возбуждение в двигателях постоянного тока с независимым возбуждением (ДПТ НВ) может быть выполнена на постоянных магнитах. ДПТ НВ с традиционной ОВ имеют два канала управления напряжением ротора и напряжением обмотки возбуждения. ДПТ НВ являются самыми массовыми электрическими машинами постоянного тока.. Электродвигатели с параллельным возбуждением (ДПТ ПВ). Характеризуются включением ОВ параллельно с цепью якоря ЭД. По своим характеристика близки к ДПТ НВ. 3. ЭД с последовательным возбуждением (ДПТ Посл.В). Обмотка статора включается последовательно с обмоткой ротора, что обуславливает зависимость магнитного потока от то- 31

33 ка якоря (фактически от нагрузки). Имеют нелинейные характеристики, на практике используются редко. 4. Двигатели со смешанным возбуждением являются компромиссным вариантом ЭД с последовательным и параллельным возбуждением. Соответственно в ЭД присутствуют две ОВ параллельная и последовательная. Если неизвестна величина сопротивления обмотки якоря, то можно воспользоваться приближенной формулой. Предполагая, что половина потерь мощности связана с потерями в меди обмотки якоря, запишем формулу I н R я 0,5 (1-η) U н I н, (4.10) где η КПД электродвигателя, Из формулы находим R (1 η) U М U н н η =. н ω I н н н н я; или я. (4.11) Iн Iн R U н I Р 3

34 ЛЕКЦИЯ 5 МЕХАНИЧЕСКИЕ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА НЕЗАВИСИМОГО ВОЗБУЖДЕНИИ Вопросы, рассматриваемые в лекции. 1. Естественные электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения (ДПТ НВ).. Жесткость статической характеристики. 3. Система относительных единиц. 4. Механические и электромеханические характеристики ДПТ НВ в относительных единицах. Прежде чем перейти к рассмотрению характеристик ДПТ НВ, дадим некоторые определения. Механическими характеристиками (МХ) двигателя называются зависимости установившейся частоты вращения от вращающего момента n = f 1 (M) или ω = f (M). Электромеханическими характеристиками (ЭМХ) двигателя называются зависимости установившейся частоты вращения от тока n = f 3 (I) или ω = f 4 (I). Как МХ, так и ЭМХ могут быть представлены и обратными функциями M = ϕ 1 (n) или I = ϕ 4 (ω). Характеристики называют естественными, если они получены при номинальных условиях питания (при номинальных напряжении и частоте вращения), номинальном возбуждении и отсутствии добавочных сопротивлений в цепи якоря. Характеристики двигателя называются искусственными при изменении любого из перечисленных выше факторов. Для вывода электромеханической и механической характеристик двигателя постоянного тока с независимым (параллельным) возбуждением рассмотрим простейшую схему включения двигателя (рис. 5.1). 33

35 U + - I Е ДП КО R доп I в ОВ R ДВ + U в - Рис Схема электрическая принципиальная двигателя постоянного тока независимого возбуждения К якорю электродвигателя прикладывается напряжение сети постоянного тока U c = U, которое в установившемся режиме уравновешивается ЭДС (Е) двигателя и падением напряжения в цепи якоря (I я R яц). U = Е + I я R яц, (5.1) где R яц = R я + R доп + R дп + R ко полное сопротивление цепи якоря, Ом; R я сопротивление обмотки якоря, Ом; R доп добавочное сопротивление в цепи якоря, Ом; R дп, R ко соответственно, сопротивления обмоток дополнительных полюсов и компенсационной обмотки, Ом. Класс изоляции Таблица 5.1 Рабочая температура, С А 105 Е 10 В 130 F 155 Н 180 С > Необходимо отметить, что для продолжения расчетов необходимо привести сопротивление обмоток ЭД к рабочей температуре, которая определяется классом изоляции (табл. 5.1) и учесть потери в щеточноколлекторном узле. Приведение сопротивления обмоток в цепи якоря

36 к рабочей температуре t, С, осуществляется по следующей формуле: R = R (1 + α θ), (5.) где R яц t 0 яц t яц t 0 суммарное сопротивление обмоток при температуре t0, определяемое по паспортным данным, Ом; α температурный коэффициент, (С) -1, для меди 3 обычно принимают α = 4 10 (С) -1 ; θ разность между рабочей температурой и t 0, С. Добавочное сопротивление в щеточно-коллекторном узле можно учесть как отношение падения напряжения на контакте щетка коллектор U щ = В к номинальному току якоря. Подставив в уравнение (5.1) значение Е согласно (4.5) и произведя соответствующие преобразования относительно частоты вращения ω, получим электромеханическую характеристику электродвигателя постоянного тока независимого (параллельного) возбуждения U Iя R яц U R яц ω = = Iя. (5.3) KФн KФн KФн Выразив величину тока якоря через электромагнитный момент (4.7) и подставив значение тока в уравнение (5.3), найдем механическую характеристику двигателя постоянного тока с независимым (параллельным) возбуждением: U R яц ω = M. (5.4) KФ () н KФн Анализируя уравнения (5.3) и (5.4), видим, что математически это уравнения прямой линии, пересекающей ось скоростей в точке ω 0. Величина ω 0 = U/(К Ф) называется скоростью идеального холостого хода, а соотношения R яц R яц Iя = M = ω c (5.5) КФ КФ () 35

37 называют статическим перепадом скорости относительно ω 0, вызванное наличием статического момента на валу двигателя. Правомерна следующая формула ω = ω 0 - ω с. (5.6) Для построения естественной механической характеристики (ЕМХ) необходимо найти две точки. Одна из них определяется из паспортных данных двигателя для номинальных значений n н и М н: ω н = π n н /30 = 0,105 n н, М н = P н /ω н, где P н номинальная мощность двигателя, Вт; n н номинальная частота вращения ЭД, об/мин. Вторая точка соответствует идеальному холостому ходу, когда I = 0; М = 0. Ее можно найти из уравнения (5.3) при подстановке паспортных данных двигателя: Uн ω ω н 0 =. (5.7) Uн Iн R я Построение естественной электромеханической характеристики (ЕЭМХ) происходит аналогичным образом с использованием паспортного значения номинального тока I н. ЕМХ можно построить, зная ω 0 и наклон характеристики, представляющей собой прямую линию. Величину наклона определяют по производной dm/dω = β с, получившей название статической жесткости механической характеристики (KФ) dm β с = =. (5.8) dω R яц На практике используют модуль статической жесткости β = β с. Величина β зависит от сопротивления якорной цепи и магнитного потока возбуждения. С учетом сказанного уравнение механической характеристики можно записать как ω = ω 0 М / β. (5.9) 36

38 Сравнить различные по мощности, току, моменту, числу пар полюсов электрические двигатели позволяет представление характеристик ЭД в относительных единицах. Система относительных единиц достаточно часто используется в технических расчетах и основана на принятии некоторой произвольной величины за базовую. Абсолютные значения параметров одной физической природы k i, отнесенные к базовой величине k баз, можно сравнивать между собой. В относительных единицах o k k i i =. (5.10) kбаз Для анализа характеристик двигателя постоянного тока независимого возбуждения за базовые величины примем: U н номинальное напряжение; I н номинальный ток двигателя; М н номинальный момент двигателя; ω 0 скорость идеального холостого хода; Ф н номинальный магнитный поток. Базовое значение сопротивления обычно определяют как R баз = U н / I н, (5.11) где R баз имеет следующий физический смысл это сопротивление цепи якоря, которое ограничивает ток якоря до номинального значения в заторможенном состоянии (ω = 0) и приложенном номинальном напряжении. Чтобы выразить электромеханическую характеристику (5.3) в относительных единицах, необходимо разделить правую и левую части уравнения на скорость идеального холостого хода ω 0 ЕЭМХ. В результате получим выражение o o o U o R яц ω = I, (5.1) o o Ф Ф 37

39 ω где ω o o U o Ф o I o R яц = ; U = ; Ф = ; I = ; R яц =. ω 0 U н Ф н I н R баз Уравнение механической характеристики в относительных единицах можно получить из уравнения (5.1) после подстановки в него выражения I =, где M =. o o M o M o M Ф н Естественные характеристики ДПТ НВ в относительных единицах примут вид: а) электромеханическая б) механическая o o o R яц ω = 1 I, (5.13) o o o ω = 1 М R яц. (5.14) o o с I R o яц М o o яц Статический перепад скорости ω = = R, o o откуда следует, что I = М. Таким образом, в относительных единицах естественные механическая и электромеханическая характеристики совпадают. При М = М н и I = I н из уравнений (5.13) и (5.14) видно, что статический перепад при номинальной нагрузке равен сопротивлению цепи якоря в относительных единицах, то есть o = R o ωсн яц. Величина яц зависит от мощности двигателя и находится в пределах 0, 0,0 для ДПТ НВ мощностью от 0,5 до 1000 квт. Зная относительное сопротивление якоря, нетрудно определить ток короткого замыкания в относительных единицах I к = o Iк I o o o Iк U R яц н. R o =, в абсолютных единицах этот ток равен 38

40 ЛЕКЦИЯ 6 РЕГУЛИРОВАНИЕ СКОРОСТИ В ДВИГАТЕЛЕ ПОСТОЯННОГО ТОКА Вопросы, рассматриваемые в лекции. 1. Искусственные электромеханические (ИЭМХ) и механические (ИМХ) характеристики ДПТ НВ при изменении сопротивления ротора.. Искусственные электромеханические и механические характеристики ДПТ НВ при изменении магнитного потока. 3. Искусственные электромеханические и механические характеристики ДПТ НВ при изменении питающего напряжения. Реостатное регулирование частоты вращения осуществляется путем введения в цепь якоря дополнительных активных сопротивлений резисторов, т.е. R яц = (R я + R дя) = var при U = U н, Ф = Ф н,. Как видно из уравнения механической характеристики (5.4), при варьировании величины добавочного сопротивления R дя в цепи якоря скорость идеального холостого хода ω 0 остается постоянной, изменяется лишь модуль статической жесткости β, а с ним и жесткость (крутизна) характеристики (рис. 6.1). Например, при введении добавочного резистора сопротивлением R дя = R я модуль статической жесткости искусственной механической характеристики (ИМХ) β и в два раза меньше, чем для естественной характеристики β е, т.е. β и = 0,5 β е. Соответственно в два раза возрастет статический перепад скорости ω = ω + ω = ω. ни не R дя В относительных единицах реостатную механическую характеристику можно записать o o o o o o ω = 1 М R яц = 1 М R яц + R дя (6.1) не 39


Аннотация рабочей программы дисциплины направление подготовки: 23.05.05 Системы обеспечения движения поездов направленность: Телекоммуникационные системы и сети железнодорожного транспорта Дисциплина:

Глава 2. ЭЛЕКТРОМЕХАНИЧЕСКИЕ И РЕГУЛИРОВОЧНЫЕ СВОЙСТВА ЭЛЕКТРОПРИВОДОВ ПОСТОЯННОГО ТОКА 2.1. Механические характеристики электродвигателей и рабочих механизмов Механической характеристикой электродвигателя

ОГЛАВЛЕНИЕ Предисловие......................................... 3 Введение............................................ 5 Глава первая Механическая часть электропривода..................... 7 1.1. Краткие

050202. Двигатель постоянного тока с параллельным возбуждением Цель работы: Ознакомиться с устройством, принципом действия двигателя постоянного тока с параллельным возбуждением. Снять его основные характеристики.

ВОПРОСЫ ВХОДНОГО КОНТРОЛЯ ЗНАНИЙ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ «Переходные процессы в электроэнергетических системах» 1 2 I 1 2 V 1 1. = 80v, U = v 2. = 0v, U = 7 v 3. = 30v, U = v 8 2 Определить значение ЭДС

Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет им. Р. Е.

МАШИНЫ ПОСТОЯННОГО ТОКА (МПТ) Назначение, области применения и устройство МПТ Генераторы постоянного тока (ГПТ) Двигатели постоянного тока (ДПТ) 1 МПТ обратимы, т. е. они могут работать в качестве: а)

1 ОБЩИЕ ПОЛОЖЕНИЯ ПО ПРОВЕДЕНИЮ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ПРИЕМУ В МАГИСТРАТУРУ НА НАПРАВЛЕНИЕ 13.04.02 «Электроэнергетика и электротехника» 1.1 Настоящая Программа, составленная в соответствии с федеральным

Теоретические вопросы 1 Применение, устройство и виды трансформаторов 2 Принцип действия трансформатора, режимы работы 3 Схема замещения трансформатора и его внешняя характеристика 4 Опыты холостого хода

Государственное автономное профессиональное образовательное учреждение Самарской области «Новокуйбышевский нефтехимический техникум» РАБОЧАЯ ПРОГРАММА Дисциплина Электрические машины Специальность ППССЗ

Двигатели постоянного тока 2015 Томский политехнический университет, кафедра ЭСиЭ Лектор: к.т.н., доцент Васильева Ольга Владимировна 1 Двигатель постоянного тока электрическая машина, преобразующая электрическую

Вариант 1. 1. Назначение, классификация и устройство трансформатора. 2. Абсолютная и относительная погрешности измерения. Класс точности измерительного прибора. 3. При увеличении частоты вращения генератора

УДК 621.3.031.: 621.6.052(575.2)(04) МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И ХАРАКТЕРИСТИКИ СИСТЕМЫ АСИНХРОННЫЙ ВЕНТИЛЬНЫЙ ДВИГАТЕЛЬ ЦЕНТРОБЕЖНЫЙ НАСОС К.К. Келебаев Разработана математическая модель и методика расчета

Тема 8.1. Электрические машины. Генераторы постоянного тока Вопросы темы 1. Электрические машины постоянного и переменного тока. 1. Устройство и принцип работы генератора постоянного тока. 2. ЭДС и вращающий

Асинхронные машины 2015 Томский политехнический университет, кафедра ЭСиЭ Лектор: к.т.н., доцент Васильева Ольга Владимировна Асинхронная машина это машина, в которой при работе возбуждается вращающееся

СОДЕРЖАНИЕ Предисловие ко второму изданию............................... 10 Предисловие к первому изданию................................ 12 Глава 1. Введение............................................

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. А.Н. ТУПОЛЕВА-КАИ» Зеленодольский институт машиностроения

ЛАБОРАТОРНАЯ РАБОТА 2 ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА ПАРАЛЛЕЛЬНОГО ВОЗБУЖДЕНИЯ Цель работы: 1. Изучить принцип действия и устройство двигателей постоянного тока. 2. Ознакомиться со схемой включения двигателя

Тема 0. Основы электропривода Вопросы темы. Электропривод: определение, состав, классификация.. Номинальные параметры электрических машин. 3. Режимы работы электродвигателей. 4. Выбор типа и мощности электродвигателя..

Перечень тем программы предмета «Электротехника» 1. Электрические цепи постоянного тока. 2. Электромагнетизм. 3. Электрические цепи переменного тока. 4. Трансформаторы. 5. Электронные устройства и приборы.

ТРЕХФАЗНЫЙ АСИНХРОННЫЙ ДВИГАТЕЛЬ С КОРОТКОЗАМКНУТЫМ РОТОРОМ Цель работы: 1 Ознакомиться с конструкцией трёхфазных асинхронных двигателей Изучить принцип работы асинхронных двигателей 3 Осуществить пуск

УДК 6213031 (5752) (04) РАЗРАБОТКА И ИССЛЕДОВАНИЕ СИЛОВОЙ ЧАСТИ ЭНЕРГОСБЕРЕГАЮЩЕЙ АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ТУРБОМЕХАНИЗМАМИ ТЭС ИВ Бочкарев Приведены результаты работ по созданию асинхронного

МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ И МОЛОДЕЖИ РЕСПУБЛИКИ КРЫМ ГОУ СПО «Бахчисарайский колледж строительства, архитектуры и дизайна» Электротехника и электроника методические указания и контрольные задания

Тема 9. Электрические машины переменного тока Вопросы темы.. Классификация машин переменного тока.. Устройство и принцип работы асинхронного двигателя. 3. Создание вращающегося магнитного поля. 4. Скорость

Http://library.bntu.by/kacman-m-m-elektricheskie-mashiny Предисловие...З Введение... 4 В.1. Назначение электрических машин и трансформаторов... 4 В.2. Электрические машины электромеханические преобразователи

Тема 7 Трехфазные цепи переменного тока План 1. Общие понятия 2. Получение трехфазного тока 3. Соединения в звезду, треугольник Ключевые понятия: трехфазный ток фаза линейный провод нейтральный провод

Что такое электродвигатель? Электрический двигатель (электродвигатель) является устройством для преобразования электрической энергии в механическую и приведения в движение машин и механизмов. Электродвигатель

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ ТАДЖИКИСТАН УВЕРЖДАЮ Декан факультета Додхудоев М. Д. 2011 г. Примерная программа дисциплины «Теория Электропривода» Рекомендуется Министерством Образования Республики

РАБОТА 2 ИССЛЕДОВАНИЕ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА С ПАРАЛЛЕЛЬНЫМ ВОЗБУЖДЕНИЕМ Оглавление 1. Цель работы. 2 2. Программа работы. 2 3. Основы теории двигателя. 4. Экспериментальное исследование 3 4.1. Пуск

1 Электрические машины Общие сведения Лекции профессора Полевского В.И. Лекция 1 Электрическая машина представляет собой электромеханическое устройство, осуществляющее преобразование механической и электрической

МИНИСТЕРСТВО ОБРЗОВНИЯ И НУКИ РФ ФЕДЕРЛЬНОЕ ГОСУДРСТВЕННОЕ БЮДЖЕТНОЕ ОБРЗОВТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНЛЬНОГО ОБРЗОВНИЯ УФИМСКИЙ ГОСУДРСТВЕННЫЙ ВИЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КОМПЛЕКТ ТТЕСТЦИОННЫХ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Введение В синхронных машинах угловая скорость вращения ротора, Ω = 2πn, равна синхронной угловой скорости поля, Ω s = 2πn 1 (термин 37, с.15). Поля статора и ротора в синхронных машинах (как и во всех

3 Содержание Предисловие...5 Введение...7 I. Электромагнитный момент и электромагнитное усилие электрических машин вращательного и поступательного движения. 1. Общее выражение для момента и силы. 14 2.

Общие сведения об электродвигателях Электродвигатель. Виды электродвигателей и их конструктивные особенности. Устройство и принцип действия электродвигателя Электродвигатель преобразует электроэнергию

МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 системы и технологии» Тема 1. Линейные цепи постоянного тока. 1. Основные понятия: электрическая цепь, элементы электрической цепи, участок электрической цепи. 2. Классификация

Четыре закона электромеханики Содержание: 1. Общие сведения 1.1. Преобразование энергии связано с вращающимися магнитными полями 1.2. Для обеспечения непрерывного преобразования энергии необходимо, чтобы

1 Синхронные электрические машины Общие сведения и элементы конструкции Лекции профессора Полевского В.И. Синхронными машинами называются электрические машины переменного тока, у которых магнитное поле,

Введение РАЗДЕЛ I Общая электротехника Глава 1. Электрические цепи постоянного тока 1.1. Основные понятия электромагнитного поля 1.2. Пассивные элементы цепей и их характеристики 1.3. Активные элементы

Примерный тематический план и содержание учебной дисциплины «Электротехника и электроника» Тема.. Электрические цепи постоянного тока Практическое занятие Расчет электрических цепей при последовательном,

Кацман М. М. Расчет и конструирование электрических машин: Учебное пособие для техникумов Рецензенты: Н. Г. Карельская, А. Е. Загорский Кацман М. М. К 30 Расчет и конструирование электрических машин: Учеб.

Асинхронныемашины Асинхроннаямашина этомашина, в которойприработевозбуждается вращающеесямагнитноеполе, норотор которойвращаетсяасинхронно, т.е. со скоростью, отличнойотскоростиполя. 1 Предложена русским

ОГЛАВЛЕНИЕ Предисловие... 3 Глава 1. Линейные электрические цепи постоянного тока... 4 1.1. Электротехнические устройства постоянного тока... 4 1.2. Элементы электрической цепи постоянного тока... 5 1.3.

9. МАШИНЫ ПОСТОЯННОГО ТОКА Машины постоянного тока являются обратимыми машинами, т.е. они могут работать как в режиме генератора, так и в режиме двигателя. Двигатели постоянного тока имеют преимущества

Тема 13 Синхронные генераторы, двигатели План 1. Конструкция синхронного генератора 2. Принцип действия синхронного генератора 3. Конструкция синхронного двигателя 4. Принцип действия синхронного двигателя

СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ ПЕРЕЧЕНЬ И СОДЕРЖАНИЕ РАЗДЕЛОВ (МОДУЛЕЙ) ДИСЦИПЛИНЫ п/п Модуль дисциплины Лекции, ч\заочн 1 Введение 0.25 2 Линейные электрические цепи постоянного тока 0.5 3 Линейные электрические

УДК 681.518.22+681.518.5: 621.313.333 В. Ю. ОСТРОВЛЯНЧИК, д.т.н., профессор, зав. каф. АЭП и ПЭ (СибГИУ) И. Ю. ПОПОЛЗИН, аспирант, ст. преподаватель каф. АЭП и ПЭ (СибГИУ) Г. Новокузнецк СРАВНИТЕЛЬНЫЙ

Предисловие 3 Введение 5 Глава первая. Электрические цепи постоянного тока 10 1.1. Получение и области применения постоянного тока 10 1.2. Элементы электротехнических установок, электрические цепи и схемы

М. И. КУЗНЕЦОВ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ ПЯТОЕ ИЗДАНИЕ, ПЕРЕРАБОТАННОЕ ПОД РЕДАКЦИЕЙ КАНД. ТЕХН. НАУК С. В. СТРАХОВА Одобрено Ученым советом по профессионально-техническому образованию Главного управления

86 ВЕСТНИК ГГТУ ИМ. П. О. СУХОГО 16 УДК 61.313.1 СТЕНД ДЛЯ ИСПЫТАНИЯ АСИНХРОННОГО ДВИГАТЕЛЯ В АВТОКОЛЕБАТЕЛЬНОМ РЕЖИМЕ И. В. ШАШКОВ, Ю. А. РУДЧЕНКО Учреждение образования «Гомельский государственный технический

ОГЛАВЛЕНИЕ Предисловие........................................ 5 1. Расчет мощности электроприводов металлорежущих станков 1.1. Общие сведения................................... 7 1.2. Строгальные станки...............................

ФАЖТ ФГОУ СПО Алатырский техникум железнодорожного транспорта Электрические машины Контрольное задание с краткими методическими указаниями для студентов заочного отделения специальности 190304.02 «Техническая

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ ЭЛЕКТРИЧЕСКИЙ ПРИВОД Контрольно-измерительные материалы Красноярск СФУ 2008 УДК 62-83(07) П12 Рецензент:

Управление образования и науки тамбовской области ТОГАПОУ «Аграрно-промышленный колледж» ПМ 3 «Техническое обслуживание, диагностирование неисправностей и ремонт электрооборудования и автоматизированных

Некоммерческое акционерное общество АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ Кафедра электропривода и автоматизации промышленных установок ЭНЕРГОСБЕРЕЖЕНИЕ СРЕДСТВАМИ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА

ТЕМА 1. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА Задание 1. В соответствии с Вашим вариантом задания (табл. 1, столбцы 2, 3, 4) начертите эскиз поперечного разреза двухполюсной машины постоянного тока и покажите

Промежуточная аттестация (в форме экзамена). Экзамен проходит в форме ответов на билеты. В каждом билете по 3 вопроса по одному из каждого задания. Всего билетов 28. 28 билет счастливый студент сам выбирает

УДК 621.313.323 О ЗАКОНАХ ЧАСТОТНОГО РЕГУЛИРОВАНИЯ СИНХРОННЫХ ДВИГАТЕЛЕЙ НА НЕФТЕПЕРЕКАЧИВАЮЩИХ СТАНЦИЯХ Шабанов В.А., Кабаргина О.В. Уфимский государственный нефтяной технический университет email: [email protected]

МИНОБРНАУКИ РОССИИ Федеральное бюджетное образовательное учреждение Высшего профессионального образования «Томский государственный архитектурно-строительный университет» (ТГАСУ) РАБОЧИЕ ХАРАКТЕРИСТИКИ

В предлагаемом вашему вниманию учебном пособии учебном пособии речь пойдет об основах электрического привода и наиболее перспективном его виде - асинхронном частотно-регулируемом электроприводе. Пособие предназначено для работников занимающихся продвижением на рынок сложной электротехнической продукции, какой является автоматизированные электроприводы и для студентов электротехнических специальностей.

Лектор: Онищенко Георгий Борисович. Доктор технических наук, профессор. Действительный член Академии электротехнических наук РФ.

В серии видеолекций рассмотрены следующие вопросы:

1. Функции и структура автоматизированного электропривода.

2. Общая характеристика регулируемого электропривода.

3. Принцип работы асинхронного двигателя.

4. Частотное регулирование скорости асинхронного двигателя.

5. Силовые управляемые полупроводниковые приборы.

6. Структурная схема преобразователя частоты.

7. Автономный инвертор напряжения. Принцип широтно-импульсной модуляции.

8. Выпрямитель и звено постоянного тока в составе преобразователя частоты.

9. Структурные схемы регулирования частотно-регулируемого электропривода.

10. Особенности высоковольтных преобразователей частоты.

11. Области применения частотно-регулируемого электропривода.

Рассмотрение данных вопросов позволит получить достаточно полное представление о составе, принципах работы, схемном построении, технических характеристиках и областях применения частотно-регулируемого асинхронного электропривода.

Лекция 1. Функции и структура автоматизированного электропривода

Задачи первой лекции дать представление о роли и значении автоматизированного электропривода в современном промышленном производстве и в электроэнергетической системе страны.

Лекция 2. Регулируемый электропривод - основной вид современного электропривода

Рассмотрены общие вопросы связанные с созданием и использование регулируемых электроприводов.

Лекция 3. Принцип работы асинхронного электродвигателя

Конструктивные особенности и основные характеристики наиболее распространенных электрических машин - асинхронных двигателей. Эти двигатели широко используются в промышленности, сельском и коммунальном хозяйстве и других областях. Диапазон мощностей выпускаемых асинхронных двигателей очень широк - от сотен ватт до нескольких тысяч киловатт, но принцип работы этих машин один для всех габаритов и модификаций.

Лекция 4. Частотное регулирование скорости асинхронного двигателя

Наиболее эффективным способом регулирования скорости асинхронного двигателя является изменение частоты и амплитуды трехфазного напряжения, прикладываемого к обмоткам асинхронного двигателя. Этот способ регулирования в последние годы получил самое широкое применение для электроприводов различного назначения, как низковольтных с напряжением до 400 В, так и высоковольтных большой мощности напряжением 6,0 и 10,0 кВ.

В настоящем разделе излагаются принципы регулирования скорости двигателя посредством изменения частоты подводимого напряжения, приводятся возможные алгоритмы изменения не только частоты, но и амплитуды напряжения и анализируются характеристики привода, получаемые при частотном способе регулирования.

Лекция 5. Принцип работы и структура преобразователя частоты

Создание и серийное производство полностью управляемых силовых полупроводниковых приборов оказало революционизирующее воздействие на развитие многих видов электрооборудования, прежде всего, на электрический привод. К новым полностью управляемым полупроводниковым приборам относятся биполярные транзисторы с изолированным затвором (IGBT) и запираемые тиристоры с комбинированным управлением. На их основе стало возможным создание преобразователей частоты для питания двигателей переменного тока и плавного регулирования их скорости вращения. В данном разделе рассмотрены характеристики новых силовых полупроводниковых приборов и приведены их параметры.

Лекция 6. Скалярные системы управления электродвигателем

Для электроприводов, работающих с ограниченным диапазоном регулирования скорости и в тех случаях, когда не требуются высокие показатели по быстродействию и точности регулирования применяются более простые скалярные системы регулирования, которые рассматриваются в данном разделе.

Модуль № 7 "Векторное управление частотно-регулируемыми электроприводами"

Векторное управление асинхронным двигателем базируется на достаточно сложных алгоритмах, отражающих представление электромагнитных процессов в двигателе в векторной форме. В настоящей лекции мы постараемся изложить основы векторного управления несколько упрощенно, избегая сложных математических выкладок.

Скоро будет продолжение!

Многие ошибочно полагают что электропривод – это электродвигатель выполняющий какую-то работу. На самом деле это не совсем верно. В систему электропривода входит не только электродвигатель, но и редуктор, система управления к нему, датчики обратной связи, различные реле и пр. Это не электрическая система, а электромеханическая. Она может быть регулируемой (автоматизированной, автоматической или не автоматизированной) или не регулируемой (насосы бытовые и пр.). Мы рассмотрим виды регулируемых устройств.

Не автоматизированный электропривод

При работе данного устройства все действия по регулированию каких-либо координат выполняются в ручном режиме. То есть для работы данного типа устройств необходим оператор, человек который будет следить за правильностью выполнения процессов. Как пример можно привести крановый электропривод, где все действия выполняются оператором.

Автоматизированный электропривод

В отличии от не автоматизированных приводов, в автоматизированных присутствуют сигналы обратной связи по координатам или параметрам (ток двигателя, скорость, положение, момент). Ниже приведена структурная схема:

Структурная схема автоматизированного электропривода

ЗА – защитная аппаратура (автоматические выключатели, предохранители и пр.)

ПЭЭ – преобразователь электрической энергии (частотник, тиристорный преобразователь)

ДТ – токовый датчик

ДН – датчик напряжения

СУ ПЭЭ – система управления преобразователем

ПУ – пульт управления

ПМ – передаточный механизм (муфта, редуктор и пр.)

РО – рабочий орган

ЭД — электродвигатель

При такой структуре управления СУ ПЭЭ управляет не только преобразователем, но и всей системой сразу. При таком управлении датчики обратной связи обеспечивают контроль за параметрами и сигнализируют об этом оператору. Данная система в автоматическом режиме может проводить некоторые операции (пуск, останов и пр.), но все равно требуется присутствие человека, для контроля, за работой данного устройства. Например, пуск много конвейерной линии, где пускаются не все конвейеры сразу, а по очереди, где учитывается также время пуска каждой линии и условия пуска. Точно также они и останавливаются.

Как видим из структурной схемы сигналы обратной связи приходят на пульт оператора, который непосредственно соблюдает технологический процесс, и часть приходит в систему управления преобразующим устройством для осуществления основных защит и отработки некоторых изменений задающего сигнала, поступающего с пульта управления.

Автоматический электропривод

Для работы электропривода в автоматическом режиме не требуется присутствие человека. В данном случае все происходит автоматически. Ниже приведена структурная схема:

Структурная схема системы автоматического управления электроприводом

АСУ ТП – автоматическая система управления технологическим процессом

Как видим из структурной схемы что в АСУ ТП приходят все датчики обратной связи. В ней происходит обработка сигналов от датчиков, и выдаются управляющие сигналы для других подсистем. Данная структура управления очень удобна, так как не требует постоянного наблюдения оператора за технологическим процессом, и снижает влияние человеческого фактора. Например модернизированные шахтные подъемные машины, которые могут работать в автоматическом режиме ориентируясь по датчикам обратной связи

В современном мире активно внедряются АСУ ТП не только для электроприводов. Очень редко встречаются системы с ручным управлением технологическими процессами все они либо автоматизированные, либо на этих линиях полностью внедрены АСУ ТП.

АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД

Курс лекций для студентов специальности

"Металлообрабатывающие станки и инструменты"

ГЛАВА 1 ОБЩИЕ ВОПРОСЫ АЭП. МЕХАНИКА АЭП

1.1. Основные понятия и определения

1.1. Механические характеристики рабочих машин и ЭД

1.2. Механические характеристики ДПТ

1.3. Механические характеристики АД

1.4. Механические характеристики СД

ГЛАВА 2 МЕТОДЫ РАСЧЕТА МОЩНОСТИ И ВЫБОРА ЭЛЕКТРОДВИГАТЕЛЕЙ

2.1. Силы и моменты, действующие в ЭП

2.2. Приведение моментов сопротивления и инерции к валу двигателя

2.3. Общие замечания. Нагрев и охлаждение двигателей

2.4. Метод средних потерь. Эквивалентные методы.

2.5. Серии электродвигателей, применяемых в станках

ГЛАВА 3 ЭЛЕМЕНТЫ СИЛОВОЙ И РЕГУЛИРУЮЩЕЙ ЧАСТЕЙ СЭП

Классификация электронных устройств СЭП

3.1. Тиристорные преобразователи

3.2. Транзисторные преобразователи

3.3. Типовые датчики

3.4. Типовые узлы защиты ЭП

3.5. Типовые регуляторы

ГЛАВА 4 ТИПОВЫЕ СЭП МЕТАЛЛОРЕЖУЩИХ СТАНКОВ

4.1. Принципы построения типовых СЭП

4.2. Одноконтурная СЭП постоянного тока

4.3. СПР ЭП постоянного тока с однозонным управлением

4.4. СПР ЭП постоянного тока с двухзонным управлением

4.5. СЭП переменного тока с АИН и АИТ (схемы с ОС по скорости и току)

4.6. Системы стабилизации технологических параметров при резании металлов

ГЛАВА 5 СЛЕДЯЩИЕ СЭП МЕТАЛЛОРЕЖУЩИХ СТАНКОВ

5.1. Типовые структуры следящих ЭП и их элементы

5.2. Следящий ЭП с подчиненным регулированием параметров

5.3. Следящий ЭП подачи копировально-фрезерных станков

ЛИТЕРАТУРА

1. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов: Учебник для вузов / М.П. Белов, В.А. Новиков, Л.Н. Рассудов. – М.: Издательский центр "Академия", 2004. – 576 с.

2. Инжиниринг электроприводов и систем автоматизации: учеб. пособие для студ. высш. учеб. заведений / М.П. Белов, О.И. Зементов, А.Е. Козярук и др.; под. ред. В.А. Новикова, Л.М. Чернигова. – М.: Издательский центр "Академия", 2006. – 368 с.

3. Ковчин С.А., Сабинин Ю.А. Теория электропривода: Учебник для вузов. – СПб.: Энергоатомиздат, 2000. – 496 с.

4. Шестаков В.М., Дмитриев Б.Ф., Репкин В.И. Электронные устройства систем автоматического управления: Учебное пособие. – СПб: Изд. ЛГТУ, 1991.

ГЛАВА 1. ОБЩИЕ ВОПРОСЫ АЭП. МЕХАНИКА АЭП.

1.1. Основные понятия и определения

Существуют различные виды приводов, но благодаря эффективному аккумулированию, простоте передачи, свойствам суммирования и делимости электроэнергия более широко используется по сравнению с другими видами энергии. В настоящее время наиболее часто используется автоматизированный электропривод (ГОСТ Р 50369-92).

Электрическим приводом (ЭП) называется электромеханическая система, предназначенная для приведения в движение рабочих органов машин, целенаправленного управления этими процессами и состоящая из передаточного, электродвигательного, преобразовательного, управляющего и информационного устройств.

Передаточное устройство предназначено для преобразования форм движения и передачи механической энергии от двигательного устройства к рабочим органам машины.

Двигательное устройство преобразует электрическую энергию в механическую и формирует совместно с передаточным устройством заданные формы движения рабочих органов.

Преобразовательное устройство служит для связи СЭП с источником электроэнергии (промышленная сеть или автономный), для преобразования одной формы электроэнергии в другую (например, выпрямление переменного тока).

Управляющее и информационное устройства предназначены для формирования заданных законов управления потоком энергии и движения рабочих органов машин.

Классификация ЭП

1. По назначению: а) главные (например, главного движения);

б) вспомогательные (например, подачи).

2. По роду потребляемого тока двигателя: а) постоянного тока;

б) переменного тока.

3. По виду силовых ключей: а) тиристорные;

б) транзисторные;

в) микропроцессорные

4. По виду системы автоматического управления (САУ):

а) аналоговые (непрерывные) системы ЭП (СЭП);

б) цифровые (дискретные) СЭП;

в) цифроаналоговые СЭП;

г) линейные или нелинейные СЭП;

д) статические или астатические СЭП;

5. По выполняемым функциям:

а) грубое регулирование скорости (разомкнутые СЭП);

б) точное регулирование скорости (замкнутые СЭП);

в) слежение за произвольно изменяющимися входными сигналами (следящие системы);

г) программная отработка заданий (СЭП с программным управлением);

д) взаимосвязанное регулирование параметров (многодвигательные и взаимосвязанные СЭП);

Функции а)-д) считаются основными. К дополнительным функциям относятся: сигнализация (диагностика) и защита ЭП.

Механические характеристики асинхронных двигателей (АД)

1) Механические характеристики 3-фазных АД

Асинхронный электродвигатель имеет трехфазную обмотку статора. При подаче на неё трехфазного напряжения частотой , образуется магнитное поле, вращающееся с угловой скоростью , где - число10

пар полюсов статора (определяется укладкой обмотки).

Ротор АД чаще всего выполняется короткозамкнутым ("беличья клетка"). В подъёмных и транспортных машинах применяют фазный ротор, где обмотка ротора через контакные кольца выводится на неподвижное основание и соединяется с добавочными сопротивлениями.

В настоящее время АД по умолчанию применяют для привода большинства объектов.

При описании АД электрические параметры двигателя имеют индексы: 1 – статор; 2 – ротор.

При R 1 =0 механическая характеристика описывается формулой

, где - критический момент; - скольжение.

1 – естественная ();

1" – реверс (меняются местами две из трех фаз);

4 – АД с фазным ротором , .

тормозные режимы

5 – динамическое торможение: на обмотку статора подается постоянный ток, тогда раскручиваемый ротор будет тормозиться;

6 – противоток (реверс): (меняются местами две фазы);

7 – рекуперация , реверс момента. Для торможения до нуля требуется ПЧ, который непрерывно снижает .

Пуск АД: Для ограничения пусковых токов АД большой мощности или получения плавного пуска асинхронного привода применяют:

1) включение активных или индуктивных сопротивлений в цепи статора, которые выводятся в конце пуска;

2) "частотный" пуск через преобразователь, плавно изменяющий частоту питания двигателя ;

3) пуск с фазным ротором;

4) реакторный пуск – включение индуктивных сопротивлений в цепь ротора. Вначале пуска частота тока в роторе близка к частоте сети, индуктивное сопротивление велико и ограничивает пусковой ток.

2) Механические характеристики двухфазных АД

Выпускаются на мощность до 1 кВт. Могут выполняться со сплошным или полым ротором. ОВ, ОУ – соответственно обмотки возбуждения и управления; Для сдвига фаз в цепь ОВ последовательно включают конденсатор емкостью 1-2 мкФ на каждые 100 Вт.

При однофазном включении .

Примечание: при частотном управлении характеристики станут линейными и параллельными друг другу, при фазовом – только линейными.

Общие замечания

1) Задачей является грамотный выбор электродвигателя для заданного механизма (агрегата) с учетом допустимого нагрева и перегрузки по току и моменту.

Потери делятся на:

Постоянные – механические и в стали – не зависят от тока двигателя;

Переменные – в меди – являются функцией квадрата тока двигателя.

Связь между потерями и КПД:

, где Р – мощность на валу; Р 1 – потребляемая мощность.

2) Нагрев и охлаждение ЭД при длительном режиме работы.

- количество тепла, выделяемое (генерируемое) электродвигателем;

Теплоемкость двигателя;

- теплоотдача.

При неизменной температуре окружающей среды температура двигателя будет возрастать по закону , где - постоянная времени нагрева, с; , град.

3) Режимы работы двигателей

а) длительный (S1)

б) кратковременный (S2)

в) повторно-кратковременный (S3, S4)

продолжительность включения , где - скважность;

стандартизированы ПВ% = 15, 25, 40, 60 %

4) Классы изоляции и допустимые рабочие температуры двигателей.

В соответствии с международными стандартами различают следующие классы изоляции

В двигателях общего назначения применяется изоляция классов B и F.

5) Климатическое исполнение электрических машин

6) Степени защиты электрических машин (ГОСТ 14254-80 и ГОСТ 17494-72)

Общее обозначение типа защиты (International Protection) – IP, где

1-я цифра: степень защиты персонала от соприкосновения с движущимися частями оборудования и от попадания внутрь оболочки твердых посторонних тел;

2-я цифра: степень защиты от попадания внутрь оборудования воды.

IP Цифра 1 Цифра 2
Защита от прикосновения Защита от попадания посторонних предметов Защита от попадания воды
Не защищено Не защищено Не защищено
От прикосновения большой площади (рукой) От предметов размером более 50 мм От водяных капель, падающих вертикально
От прикосновения пальцами От предметов размеров более 12 мм От вертикально падающих капель и брызг под наклоном до 15 0 к перпендикуляру
От прикосновения предметами или проволокой диаметром более 2,5 мм *) От предметов размером более 2,5 мм От вертикально падающих капель и брызг под наклоном до 60 0 к перпендикуляру
От прикосновения предметами или проволокой диаметром более 1 мм *) От малых твердых предметов (более 1 мм) От капель воды со всех сторон
От прикосновения вспомогательными средствами любого типа *) От осаждения пыли внутри От струй воды со всех сторон
От прикосновения вспомогательными средствами любого типа От попадания любой пыли От волн воды
- - Защиты при погружении в воду
- - Защита при длительном погружении в воду

*) Не относится к вентиляторам электрических машин

Стандартное исполнение защиты двигателей IP 54. По заказу обеспечиваются повышенные степени защиты IP 55 и IP 65.

Приводы, работающие с большим количеством включений

Приводы с дополнительной инерционной массой (инерционной крыльчаткой)

Приводы с управлением от преобразователя с диапазоном регулирования свыше 1:20

Приводы с управлением от преобразователя, сохраняющие номинальный вращающий момент при низкой частоте вращения или в положении останова

Методы расчета мощности

Выбор мощности двигателя при стационарной нагрузке осуществляется по условию (ближайший больший по каталогу). В этом случае двигатель подошел по нагреву.

Рассмотрим выбор мощности двигателей при переменной нагрузке:

1. Метод средних потерь (прямой метод).

В основе метода лежит нагрузочная диаграмма. Рассмотрим прямой метод учета потерь в двигателе

1) Рассчитывается средняя мощность на валу двигателя по формуле

, Закон Джоуля-Ленца

Потери в двигателе пропорциональны активной мощности. Таким образом, нагрев двигателя определяется не , а . Отсюда возникает задача расчета потерь.

2) выбор мощности двигателя ,

где k= 1,2...1,3 – коэффициент запаса, учитывающий пропорциональность потерь квадрату тока;

3) Расчет потерь при различных нагрузках с использованием каталожных кривых по формуле

4) определяются средние потери за цикл ;

5) выбор мощности двигателя по условию , где - двигатель подошел по нагреву;

6) выбранный двигатель должен быть проверен на перегрузку и пусковые условия

ДПТ: , ;

АД: ,

Эквивалентные методы

Данные методы относятся к косвенным, поскольку косвенно учитывают потери в электрической машине.

1) Метод эквивалентного тока.

Рассчитывается некоторый эквивалентный ток, потери от которого равнозначны фактическим при переменной нагрузке т.к.

2) Метод эквивалентного момента при Ф-const

; - двигатель подошел по нагреву.

3) Метод эквивалентной мощности при Ф-const, -const

; - двигатель подошел по нагреву.

Затем выбранный двигатель должен быть проверен на перегрузку и пусковые условия.

Наиболее широкое применение у метода эквивалентного тока, наиболее узкое у метода эквивалентной мощности. Методы эквивалентного тока и мощности не применимы при двухзонном управлении так как содержат блоки произведений в формулах , . Более точным является метод средних потерь (прямой метод).

Замечание: При повторно-кратковременный режиме двигатель выбирается из условия .

;

Здесь методы эквивалентного момента и тока практически не используются. В случае, если нагрузка в разных циклах неодинакова, рассчитывают среднюю ПВ с учетом n циклов.

Тиристорные преобразователи

Достоинства: а) надежность; б) малая масса; в) малая мощность управления; г) высокое быстродействие; д) высокий КПД (0,95-0,97)

Недостатки: а) не выдерживает перегрузок; б) снижение сos при малых нагрузках; в) генерация высших гармонических колебаний в сеть при коммутации вентилей (для борьбы с ними включают ТОР)

1. Схемы ТП и способы управления:

1) Нулевая схема реверсивного привода

m=3 – фазность преобразователя. Достоинства: меньшее количество тиристоров. Применяется в маломощных приводах.

2) Мостовая схема выпрямления реверсивного привода (схема Ларионова)

m=6; Достоинства: а) меньшее количество сглаживающих дросселей; б) меньший класс тиристоров; Применяется в приводах средней и большой мощности.

2. Способы управления реверсивными ТП:

а) раздельное, когда группы тиристоров управляются поочередно.

Достоинства: 1) отсутствие уравнительного тока и, следовательно необходимости включения уравнительных реакторов (УР);

Недостатки: 1) широкая зона прерывистых токов; 2) нелинейность механических характеристик в начале координат; 3) замедленный реверс напряжения преобразователя.

Вместе с тем раздельное управление ТП применяется чаще.

б) согласованное, когда обе группы тиристоров управляются совместно, по условию , причем , ;

Достоинства: 1) линейная характеристика; 2) узкая зона прерывистых токов; 3) быстрый реверс.

Недостатки: 1) наличие статических и динамических уравнительных токов. Для борьбы с ними включают уравнительные реакторы (УР).

3. Математическое описание ТП

1) Система управления тиристорным преобразователем (СУТП) или система импульсно-фазового управления (СИФУ)

а) со стабилизированным пилообразным опорным напряжением . Не содержит высших гармоник в опорном напряжении, обеспечивает четкое открытие тиристоров и применяется в ТП средней и большой мощности.

б) с нестабилизированным синусоидальным опорным напряжением . Применяется в маломощных ТП при широком диапазоне регулирования скорости ТП.

в) если СУТП является цифровой, то угол открытия тиристоров , где - код числа.

2) Силовая часть ТП.

Описывается выражением , где - максимальная выпрямленная ЭДС ТП. Кроме того, ТП имеет запаздывание , среднестатистическое . При m=6 .

а) СУТП со стабилизированным пилообразным опорным напряжением.

Нелинейная зависимость .

б) СУТП с нестабилизированным синусоидальным опорным напряжением.

; - линейная зависимость !

Из рисунков видно, что колебания напряжения сети переменного тока (пунктирная линия) влияют на выходную ЭДС в случае а) и не влияют в случае б).

3) Нагрузка ТП (двигатель). Формирует характер тока преобразователя, который может быть непрерывным, гранично-непрерывным и прерывистым.

Характер тока влияет на характеристики привода. В зоне непрерывного тока характеристики жесткие, поскольку внутреннее сопротивление преобразователя невелико. При прерывистом токе внутреннее сопротивление ТП существенно возрастает, что снижает жесткость характеристик. , где - коммутационное сопротивление. образуется в режиме непрерывного тока при перекрытии фаз. - динамическое сопротивление тиристоров.

Зона прерывистого тока крайне неблагоприятна для регулирования, так как падает жесткость характеристик привода, и появляется нелинейная зависимость (см. рис.).

Типовые датчики

Рассмотрим датчики отечественной универсальной системы блочных регуляторов аналогового исполнения (УБСР-АИ).

1) Датчик тока ДТ1-АИ Применение операционного усилителя (ОУ) позволяет развязать силовую и управляющую цепи привода, что также необходимо по технике безопасности. Коэффициент усиления подбирается так, чтобы максимальному измеряемому току соответствовало .

2) Датчик напряжения ДН1-АИ. Коэффициент усиления подбирается так, чтобы максимальному измеряемому напряжению соответствовало .

3) Датчик ЭДС

3) Датчики скорости. В качестве датчиков скорости используются прецизионные тахогенераторы постоянного и переменного тока .

4) Датчики положения

а) Резольвер (англ. resolver). Работает по принципу синусно-косинусного вращающегося трансформатора (СКВТ). У вращающегося трансформатора ротор состоит из катушки (обмотки), которая вместе с обмоткой статора образует трансформатор. Принципиально резольвер устроен точно так же с той лишь разницей, что статор выполнен не из одной, а из двух расположенных под углом 90° друг к другу обмоток. Резольвер служит для определения абсолютного положения вала двигателя внутри одного оборота. Кроме того, по сигналу резольвера определяется значение скорости и моделируется инкрементный датчик для регулирования положения. Ротор резольвера закреплен на валу двигателя. Для того чтобы можно было передавать переменное несущее напряжение на ротор без щеток, на статоре и роторе размещены дополнительные обмотки. По двум выходным синусоидальным напряжениям и , сдвинутым на 90° (рис. 7), можно определить угол поворота ротора, скорость и инкрементный сигнал по положению (моделирование инкрементного датчика).

б) Фотоэлектрические датчики серии ПДФ. Отсутствие температурного и временного дрейфа. 500-5000 имп/об.

5) Датчики рассогласования. Применяются в следящих системах.

а) Потенциометрические датчики рассогласования

б) Сельсины в трансформаторном режиме. Сельсин имеет 2-фазную обмотку статора и 3-фазную обмотку ротора. Ось сельсина-датчика приводится в движение от задающего устройства, а ось сельсина-приемника – от исполнительного. При разности углов (т.е. ошибке слежения) на статорной обмотке генерируется напряжение . Сельсины работают с углами ошибки до 90 градусов, дальше происходит "опрокидывание" сигнала (см.рис.). Существуют также индуктосины – линейные аналоги сельсинов.

Типовые регуляторы

1) Статика описывается алгебраическими уравнениями (АУ), а динамика – дифференциальными ДУ. Для облегчения исследования динамики сложных электромеханических систем с помощью преобразования Лапласа переходят из временной t-области в р-область изображений, где р (s) – оператор дифференцирования (Лапласа), . При этом ДУ заменяются АУ.

Передаточной функцией (ПФ) W(p) называется отношений изображений по Лапласу выходной переменной к входной (см. курс ТАУ).

2) Показатели качества переходного процесса. Рассмотрим переходный процесс в замкнутой системе:


а) Статическая ошибка ;

б) Время переходного процесса – время последнего вхождения регулируемой величины в 5% зону;

в) Перерегулирование ;

3) Типовые регуляторы. Используются в замкнутых системах для получения требуемых показателей качества. Наиболее часто применяются пропорциональные (П), пропорционально-интергальные (ПИ) и пропорционально-интегрально-дифференциальные (ПИД) регуляторы. Выбор типа регулятора определяется передаточной функции объекта управления. Передаточные функции регуляторов

; ;

Реализация аналоговой схемы Коэффициент усиления
;
; ;

Одноконтурные СЭП

Лекции по дисциплине «Автоматизированный электропривод» Литература 1. Чиликин М.Г., Сандлер А.С. Общий курс электропривода (ЭП).-6-е изд. -М.: Энергоиздат, – 576 с. 2. Москаленко В.В. Электрический привод - М.: Мастерство; Высшая школа, –368 с. 3. Москаленко В.В. Электрический привод: Учебник для электротехн. спец. -М.: Высш. шк., – 430 с. 4. Справочник по автоматизированному электроприводу / Под ред. В.А. Елисеева, А.В. Шиянского.-М.: Энергоатомиздат,1983. – 616 с. 5. Москаленко В.В. Автоматизированный электропривод: Учебник для вузов.- М.:Энергоатомиздат, с. 6. Ключев В.И. Теория электропривода. - М.:Энергоатомиздат, с. 7. ГОСТ Р –92. Электроприводы. Термины и определения. Госстандарт России. 8. Справочник инженера – электрика с.-х. производства / Учебное пособие.-М.: Информагротех, с. 9. Методические указания к выполнению лабораторных работ по основам электропривода для студентов факультета электрификации с.х. / Ставрополь, СтГАУ, «АГРУС», – 45 с. 10. Савченко П.И. Практикум по электроприводу в с.х. – М.: Колос, с. Рекомендуемые сайты в Internet: Лекции по дисциплине «Автоматизированный электропривод» Литература 1. Чиликин М.Г., Сандлер А.С. Общий курс электропривода (ЭП).-6-е изд. -М.: Энергоиздат, – 576 с. 2. Москаленко В.В. Электрический привод - М.: Мастерство; Высшая школа, –368 с. 3. Москаленко В.В. Электрический привод: Учебник для электротехн. спец. -М.: Высш. шк., – 430 с. 4. Справочник по автоматизированному электроприводу / Под ред. В.А. Елисеева, А.В. Шиянского.-М.: Энергоатомиздат,1983. – 616 с. 5. Москаленко В.В. Автоматизированный электропривод: Учебник для вузов.- М.:Энергоатомиздат, с. 6. Ключев В.И. Теория электропривода. - М.:Энергоатомиздат, с. 7. ГОСТ Р –92. Электроприводы. Термины и определения. Госстандарт России. 8. Справочник инженера – электрика с.-х. производства / Учебное пособие.-М.: Информагротех, с. 9. Методические указания к выполнению лабораторных работ по основам электропривода для студентов факультета электрификации с.х. / Ставрополь, СтГАУ, «АГРУС», – 45 с. 10. Савченко П.И. Практикум по электроприводу в с.х. – М.: Колос, с. Рекомендуемые сайты в Internet:








Источник электрической энергии (ИЭЭ) Управляющее устройство (УУ) Преобразовательное устройство (ПРБ) Электродвигательное устройство (ЭД) М Передаточное устройство (ПРД) Потребитель механической энергии (ПМЭ) U,I,f М д, ω д U д,I д,f д F д, V д М м (F м), ω м (V м) задания Рисунок 3 – Структурная схема АЭП


3 Коэффициент полезного действия АЭП Как и для всякого электромеханического устройства, важным показателем является коэффициент полезного действия АЭП = ПРБ · ЭД · ПРД Так как коэффициент полезного действия ПРБ и ПРД1 и мало зависит от нагрузки, то АЭП определяется ЭД, которое также является достаточно высоким и при номинальной нагрузки составляет 60-95%.


4 Достоинства АЭП 1) низкий уровень шума при работе; 2) отсутствие загрязнения окружающей среды; 3) широкий диапазон мощностей и угловых скоростей вращения; 4)доступность регулирования угловой скорости вращения и соответственно производительности технологической установки; 5)относительная простота автоматизации, монтажа, эксплуатации по сравнению с тепловыми двигателями, например, внутреннего сгорания.

← Вернуться

×
Вступай в сообщество «i-topmodel.ru»!
ВКонтакте:
Я уже подписан на сообщество «i-topmodel.ru»